摘要:本研究在高性能芳香族聚磺酰胺 (PSA) 纤维上设计并构建了双层纳米涂层,以实现强大的导电和电磁干扰 (EMI) 屏蔽。更具体地说,首先通过化学镀镍 (Ni) 或镍合金 (Ni-P-B) 赋予 PSA 纤维必要的电导率。之后,进行银电镀以进一步提高复合材料的性能。彻底研究了所提出的包覆纤维的形貌、微观结构、环境稳定性、力学性能和 EMI 屏蔽性能,以检查电沉积对非晶态 Ni-P-B 和结晶 Ni 基材的影响。获得的结果表明,PSA@Ni@Ag 和 PSA@Ni-P-B@Ag 复合纤维均具有高环境稳定性、良好的拉伸强度、低电阻和出色的 EMI 屏蔽效率。这表明它们在航空航天、电信和军事工业中具有广泛的应用前景。此外,PSA@Ni-P-B@Ag纤维配置似乎更合理,因为它表现出更光滑、更致密的银表面以及更强的界面结合,从而导致更低的电阻(185 m Ω cm − 1 )和更好的屏蔽效率(X波段为82.48 dB)。
木质素是产生生物质芳香族化合物的最有前途的候选者。然而,挑战在于在轻度条件下木质素单体之间的C键裂解,因为这些键具有高解离能。电化学氧化允许轻度切割C -C键,被认为是一种有吸引力的解决方案。为了在木质素的价值中实现低能消耗,使用高效的电催化剂是必不可少的。在这项研究中,开发了一种精心设计的催化剂,该催化剂由掺杂二氧化镍(Oxy)氢氧化物的钼二硫化物异质结的精心化催化剂。在高价状态下钼的存在促进了丁基氢过氧化物的吸附,从而导致临界自由基中间体的形成。此外,掺杂掺杂的掺杂掺入镍的电子结构,从而导致较低的能屏障。结果,异质结催化剂在木质素模型化合物中裂解Cα -Cβ键的选择性为85.36%,在环境条件下达到了93.69%的底物转换。此外,电催化剂解聚了有机溶质木质素(OL)的49.82 wt%的可溶性级分,导致高达13 wt%的芳族单体的产率。很明显,还使用工业牛皮纸木质素(KL)证明了制备的电催化剂的有效性。因此,这项研究提供了一种实施木质素精炼中电催化氧化的实用方法。
T 1 态。对于三重态,CCSD(T) 和 CASSCF 的结果大致相同,CCSD 的结果要差得多(图 S1b)。在分而治之的 q-UCCSD 方法中加入自旋翻转似乎是必不可少的,这导致垂直激发能量相对于 CASSCF 提高了约 1.2 eV。由于三重态的 HF 参考是 |11 20>(平面外三重态,平面内单重态),因此自旋翻转允许的 q-UCCSD 的优越性能的一个可能解释是它可以访问 |20 11> 配置(平面外单重态,平面内三重态),这对整体波函数有重要贡献(参见正文中的图 4a)。特别值得注意的是,带有自旋翻转的 q-UCCSD 方法找到了与 CASSCF 相同的最小值,并且总体上比 CCSD 产生了更好的结果。由于起点不佳,零 BLA 几何仍然很困难,尽管这种电子状态比 S0(一个 π 系统中四个近简并自旋轨道中的两个电子)的病态性要小。
一旦乳腺癌通过转移扩散到远处器官,其预后相对较差。转移性乳腺癌细胞通过上皮-间质转化和表观遗传调控机制从肿瘤微环境中获得侵袭性特征。细胞色素 p450 19A1 (CYP19A1; EXC 1.14.1) 是一种芳香酶,由雌激素分泌细胞在内质网中产生,可将雄激素转化为雌激素。位于 15 号染色体的基因 CYP19A1 编码的人胎盘芳香酶对于雄烯二酮芳香化为雌酮至关重要。在女性人群中,乳腺癌是死亡的主要原因。在健康女性中,雌激素不仅主要分泌在卵巢中,还分泌在乳腺、骨骼、皮肤和脂肪组织中。然而,绝经后,雌激素主要在乳腺组织中产生。此外,约 60% 的绝经前癌症和 75% 的绝经后癌症都依赖雌激素。雌激素生物合成的转化过程包括雄激素 19-甲基的羟基化,随后甲基被同时消除,导致 A 环芳香化(图 2)[3]。
生物表面活性剂是表面活性剂,面临活性乳液,可降低两种液体之间或液体之间的界面压力。表面活性剂是有机乳液,既包含疏水(表面活性剂的头部)和亲水性(表面活性剂的尾部)的一半。因此,表面活性剂含有两种水不足,即驱虫群和可响应的水组,即热爱水组。生物表面活性剂也会像化学表面活性剂一样面临活跃的乳液,但与化学表面活性剂不同,生物表面活性剂是由细菌,真菌和激励剂等微生物合成的。生物表面活性剂是属于包括糖脂,脂肪肽,脂肪肽,脂肪酸盐的各种类别的有机化合物,磷酸化,磷酸化,磷酸化,磷酸化。生物表面活性剂包括掉落面部压力的包裹,稳定混合物,促进愤怒,通常是无毒的,可生物降解的。BIO乳化剂是两亲构的聚合物,而生物性聚合物面临的活性化学物质,而活性化学物质是由大量细菌,激发和fungi产生的。
摘要:进行了比较定量结构 - 保留关系(QSRR)研究,以预测使用分子描述符的多环芳烃(PAHS)的保留时间。分子描述符是由软件龙生成的,并用于构建QSRR模型。还考虑了色谱参数的影响,例如流量,温度和梯度时间。使用人工神经网络(ANN)和部分最小二乘回归(PLS-R)来研究保留时间(以响应为响应)和预测因子之间的相关性。通过遗传算法选择了六个描述符,以开发ANN模型:分子量(MW);环描述符类型NCIR和NR10;径向分布功能RDF090U和RDF030M;以及3D-MORSE的描述符MOR07U。PLS-R模型中最重要的描述符是MW,RDF110U,MOR20U,MOR26U和MOR30U;边缘邻接Indice SM09_AEA(DM);基于3D矩阵的描述符spposa_rg;和逍遥布H7U。构建模型用于预测校准集中未包含的三个分析物的保留。考虑到预测集的统计参数RMSE(分别为PLS-R和ANN模型的0.433和0.077),该研究证实了与色谱参数相关的QSRR模型可以通过非线性方法更好地描述。
摘要:尽管科学研究带来了显着的结果,但乳腺癌(BC)仍然代表了女性死亡的第二大主要原因。雌激素受体阳性(ER+)BC占大多数被诊断的BC,强调了雌激素信号传导的破坏,作为第一线治疗的靶标。目前通过抑制芳香酶(AR)酶或调节雌激素受体(ER)α来实现此目标。一种有吸引力的策略,用于削减卑诗省和减少副作用和抵抗问题,可能在于设计能够同时靶向AR和ER的多功能化合物的设计。在本文中,适当地修饰了先前报道的与Avonoid相关的有效AR抑制剂,目的是靶向ERα。结果,出现了均衡衍生物3b和4a,并具有均衡的亚摩尔摩尔双重作用化合物。然后进行了广泛的计算研究,以了解与两个靶标建立的最佳化合物的见解。这项研究强调了从单目标化合物转换为平衡的双作用剂的可行性,确定多目标方法可能代表了抵消ER+ BC的有效治疗选择。Homoiso avone Core是一种有价值的自然风格的脚手架,用于设计多功能化合物。
摘要 ◥ 目的:在 PERTAIN 的初步分析中(中位随访期 31 个月),在曲妥珠单抗和芳香化酶抑制剂 (AI) 基础上加用帕妥珠单抗,联合/不联合化疗,可显著改善未经治疗的 HER2 阳性和激素受体阳性转移性或局部晚期乳腺癌 (M/LABC) 患者的无进展生存期 (PFS)。在未接受诱导化疗的患者中观察到潜在的增强治疗效果。我们呈现最终分析(中位随访期 > 6 年)。患者和方法:患者 (N = 258) 按 1:1 的比例随机分配接受帕妥珠单抗 (负荷/维持剂量:840/420 mg) 加曲妥珠单抗 (负荷/维持剂量:8/6 mg/kg) 每 3 周和 AI (1 mg 阿那曲唑或 2.5 mg 来曲唑每日;A 组) 或曲妥珠单抗和 AI (B 组)。诱导化疗由研究者决定。主要终点:PFS。关键次要终点:总生存期 (OS) 和安全性。
1 Ucibio,Requin,Baochemistry,生物科学系实验室,Porto大学,Rua Jorge Viterbo Ferreira,n o 228,40-313 Porto,Porto 2丹麦4号大学,CIEPQPF,药学学院,药物化学实验室,Azinhaga de Santa Comba,P o lo III,SA SA,3000-548 Coimbra,葡萄牙5 CIEPQPF,COIMBRA CORBRA,COIMBRA COIMBRA,COIMBRA,COIMBRA,COIMBRA,COIMBRA,COIMBRA,COIMBRA,COIMBRA,COIMBRA,COIMBRA,COY COY a COY) Haga de Santa Comba,PóIII,用于SA的科学,3000-548 Coimbra,葡萄牙 *通信:cristinamaralibd@gmail.com(CA); froleira@ff.uc.pt (FMFR);电话:+351-220428560(加拿大); +351-239488400(FMFR);传真:+351-226093390(加拿大); +351-239488503 (FMFR)
摘要:在本研究中,我们描述了一种将芳烃掺入封闭管(我们将其命名为胶囊烯)的合成方法。首先,我们制备了花瓶状的分子篮 4 – 7 。这些分子篮由一个苯碱基和三个双环[2.2.1]庚烷环融合而成,这些环延伸到邻苯二甲酰亚胺 ( 4 )、萘二甲酰亚胺 ( 6 ) 和蒽二酰亚胺侧 ( 7 ),每个侧都带有一个二甲氧基乙烷缩醛基团。在催化三氟乙酸 (TFA) 的存在下,4、6 和 7 顶部的缩醛转变为脂肪族醛,随后在分子内环化为 1,3,5-三氧杂环己烷(1 H NMR 光谱)。这种环闭合几乎是一个定量过程,它提供了不同大小的胶囊烯 1 (0.7×0.9 纳米)、8 (0.7×1.1 纳米;) 和 9 (0.7×1.4 纳米;),这些胶囊烯的特征是 X 射线晶体学、微晶电子衍射、紫外/可见光、荧光、循环伏安法和热重法。胶囊烯具有出色的刚性、独特的拓扑结构、出色的热稳定性以及可能可调的光电特性,有望用于构建新型有机电子设备。