目录 ................................................................................................................................................ vi 1. 简介 ...................................................................................................................................... 1 2. 术语 .............................................................................................................................................. 1 3. 安全级别 1 威胁和缓解措施概述 ...................................................................................... 2 3.1 补充标准和指导 ...................................................................................................................... 5 3.2 排除 ............................................................................................................................................. 6 3.3 文档使用 ...................................................................................................................................... 7 3.4 关于缓解措施的一般性评论 ............................................................................................................. 8 4. 威胁描述 (TD) ............................................................................................................................. 8 TD 1:攻击者利用已知的 FPGA 平台漏洞 ............................................................................. 8
载卫星通信的最新进展提高了动态修改直接辐射阵列(DRA)的辐射模式的能力。这不仅对于传统的通信卫星(例如地球轨道(GEO))至关重要,而且对于低轨道(例如低地球轨道(LEO))的卫星也至关重要。关键设计因素包括光束的数量,梁宽,有效的各向同性辐射功率(EIRP)和每个梁的侧叶水平(SLL)。然而,当试图同时满足上述设计因素的要求时,在多微型方案中出现了一个挑战,这些设计因素反映为不均匀的电源分配。这导致过度饱和,尤其是由于每个光束的激活时间(通常称为激活实例),在中心位置的天线元件中。应对这一挑战,本文提出了一种平衡每个必需光束天线元件激活实例的方法。我们的重点是在位于地球表面500公里的立方体上以19 GHz运行的光束。我们引入了一种基于遗传算法(GA)的算法,以通过调节每个天线元件的重量矩阵的振幅分量来优化光束成型系数。该算法的关键约束是对每个元素激活实例的限制,避免了射频(RF)链中的过度饱和。此外,该算法可满足梁的要求,例如梁宽,SLL,指向方向和总功率。使用先前的关键设计因素,该算法将优化所需的基因,以解决所需的光束特性和约束。我们使用8×8 DRA贴片天线在三个方案中测试了该算法的有效性,该天线具有圆形极化,并在三角形晶格中排列。结果表明,我们的算法不仅符合所需的光束模式规格,而且还确保了整个天线阵列的均匀活化分布。
晶格共振是由周期性纳米结构阵列支持的集体模式。它们源自阵列各个成分的局部模式之间的相干相互作用,对于由金属纳米结构制成的系统,这通常对应于电偶极等离子体。不幸的是,基本的对称性原因使得二维 (2D) 电偶极子排列无法吸收超过一半的入射功率,从而对传统晶格共振的性能造成了很大的限制。这项工作引入了一种克服这一限制的创新解决方案,该解决方案基于使用由包含一个金属和一个介电纳米结构的单元格组成的阵列。使用严格的耦合偶极子模型,可以证明该系统可以支持两个独立的晶格共振,分别与纳米结构的电偶极子和磁偶极子模式相关。通过调整阵列的几何特性,这两个晶格共振可以在光谱域中精确对齐,从而导致入射功率的全部吸收。这项工作的结果为合理设计能够产生完美吸收的晶格共振阵列提供了清晰而又普遍的指导,从而充分利用这些模式的潜力,用于需要有效吸收光的应用。
摘要:交叉反应传感器的阵列,结合其多元输出的统计或机器学习分析,已使生物医学,环境科学和消费产品中的复杂样品进行了整体分析。比较经常与哺乳动物的鼻子或舌头进行比较,此视角检查了传感阵列在分析食物和饮料的作用,以获得质量,真实性和安全性。我专注于光学传感器阵列,作为低成本,易于衡量的工具,可在现场,工厂地板甚至消费者使用。新颖的材料和方法被突出显示,并讨论了研究领域的挑战,包括样本处理/处理和访问大量的样本集以训练和测试阵列以解决行业中的实际问题。最后,我研究了将传感阵列与鼻子和舌头的比较是否对人类品味所定义的行业有帮助。关键字:传感阵列,交叉反应,电子鼻子,机器学习,食物,饮料,气味,味道
摘要这项研究为基于有效的低功率VLSI方法设计了一种在信号和图像处理中设计的4位阵列乘数的创新技术。建议的架构使用近阈值区域的绝热方法来优化传播延迟和耗能之间的权衡。乘数是许多数字电子环境中必不可少的组成部分,导致了许多针对某些应用程序定制的乘数类型的诞生。与传统的CMOS技术相比,该技术大大降低了动态和静态功率耗散。接近阈值绝热逻辑(NTAL)是使用单个时间变化的电源实现的,这简化了时钟树的管理并提高了能源效率。使用Tanner EDA工具和幽灵模拟器在TSMC 65 nm技术节点上模拟了建议的设计,并确保验证了优化的结果。与典型的CMOS方法相比,在保持相似的设计参数的同时,可变频率,电源电压和负载电容的功率耗散大约有66.6%,14.4%和64.6%的显着提高。值得注意的是,随着频率变化,负载电容在C负载= 10 pf和vdd(max)= 1.2 V时保持恒定。随着电源电压的变化,负载电容在C负载= 10 pf时保持恒定,而频率为f = 4 GHz; and with load capacitance variation, the frequency is maintained at F = 4 GHz and the supply voltage at VDD (max) = 1.2 V. Keywords: - 4-bit array multiplier, adiabatic logic, low-power VLSI, Near Threshold Region, NTAL approach, TSMC 65 nm CMOS technology, mixer circuit, signal and image processing, energy efficiency, Tanner EDA, Spectre simulator, and功率耗散优化。
摘要 本研究提出了一种创新技术,基于一种高效的低功耗 VLSI 方法,设计用于信号和图像处理中混频电路应用的 4 位阵列乘法器。建议的架构使用近阈值区域的绝热方法来优化传播延迟和功耗之间的权衡。乘法器是许多数字电子环境中必不可少的组件,因此诞生了许多针对特定应用定制的乘法器类型。与传统 CMOS 技术相比,该技术显著降低了动态和静态功耗。近阈值绝热逻辑 (NTAL) 使用单个时变电源实现,从而简化了时钟树管理并提高了能源效率。使用 Tanner EDA 工具和 Spectre 模拟器在 TSMC 65 nm 技术节点上对建议的设计进行仿真,以确保验证优化结果。与典型的 CMOS 方法相比,在保持相似设计参数的情况下,可变频率、电源电压和负载电容的功耗分别显著改善了约 66.6%、14.4% 和 64.6%。值得注意的是,随着频率变化,负载电容保持恒定在 C load = 10 pF 和 VDD (max) = 1.2 V;随着电源电压变化,负载电容保持恒定在 C load = 10 pF 和频率 F = 4 GHz;随着负载电容变化,频率保持在 F = 4 GHz 和电源电压 VDD (max) = 1.2 V。关键词:- 4 位阵列乘法器、绝热逻辑、低功耗 VLSI、近阈值区域、NTAL 方法、TSMC 65 nm CMOS 技术、混频器电路、信号和图像处理、能源效率、Tanner EDA、Spectre 模拟器和功耗优化。
<3.4 kg,包括76.2厘米的飞行铅安全带台阶尺寸0.0625摄氏度调整速率1.0度/s输出扭矩 @ 1.0度/s 11英寸11英寸lb典型在77°F 1.2 nm惯性载荷> 86,452.6 lb-in 2> 25.3 kg-2> 25.3 kg-m 2> 25.3 kg-m 2 360 deg> 0.0 deg> 0.0 0.6 in lbm> 0.6 in lbm> 0.6 in lm> 0.0 nm nm nm nm> 0.0 nm nM电阻52.5Ω(标称,2相)滑动环功率转移44个转移 @ 5.0 AMPS最大滑动环信号传输26转移 @ 2.5安培最大电压28 VDC电压28 VDC电位计的电阻10kΩ合格的热环境温度,运行-31°F至160°F -355°C至71°C温度,2.112 -80°C至96°C注意:此数据仅用于信息,并且可能会更改。联系Sierra空间以获取设计数据。
摘要:传统的反射特性可调的反射式光学表面需要复杂的外部电源,电源系统结构和制备工艺复杂,导致反射特性的调制有限,难以大规模应用。受生物复眼的启发,利用不同的微结构来调制光学性能。凸非球面微镜阵列(MMA)可以在扩大视场角的同时提高亮度增益,亮度增益广角>90°,视场广角接近180°,具有大增益广角和大视场广角的反射特性。凹非球面微镜阵列可以使亮度增益增加较大量,最高可达2.66,具有高增益的反射特性。并进行了工业级生产和在投影显示领域实际应用。结果证实,凸面MMA能够在宽光谱和宽角度范围内实现亮度增益,而凹面MMA能够显著提高亮度增益,这可能为开发先进的反射光学表面提供新的机遇。
摘要。尾流效应是风电场设计和分析中的一个关键挑战。对于浮动风电场,平台在涡轮机的气动载荷下发生偏移,并受到系泊系统的约束,系泊系统的允许偏移量可能有很大变化。当考虑尾流转向时,涡轮机的侧风偏移可以抵消尾流的横向偏转。这项工作提出了一种工具,可以有效地模拟浮动风电场尾流转向和平台偏移的耦合影响。该工具依赖于频域风电场模型 RAFT 和稳态尾流模型 FLORIS。使用 FAST.Farm 进行了验证,然后将该工具应用于一个简单的双涡轮机案例研究。在比较对涡轮机功率的影响时,考虑了一系列具有增加的平台偏移和不同偏航错位角的系泊系统。探讨了对涡轮机间距和系泊系统方向的其他敏感性。结果表明,顺风涡轮机发电存在一个最不理想的观察圈宽度,该宽度随偏航错位角和涡轮机间距而变化。此外,偏航失准条件下的涡轮机偏移量会因系泊系统相对于转子平面的方向而发生显著变化,进而影响最佳失准角。这些结果凸显了在评估浮动风力发电机组的尾流转向策略时考虑浮动平台偏移量和系泊系统的重要性。
3 伦敦都市大学通信技术中心,伦敦 N7 8DB,英国;b.virdee@londonmet.ac.uk、i.garciazuazola@londonmet.ac.uk、a.krasniqi@londonmet.ac.uk,4 马德里卡洛斯三世大学信号理论与通信系,28911 Leganés,马德里,西班牙;mohammad.alibakhshikenari@uc3m.es 5 伊拉克 Al-Turath 大学医疗器械技术工程系;amna.shibib@ieee.org 6 土耳其伊斯坦布尔 34220 Esenler 伊尔迪兹技术大学电子与通信工程系;nturker@yildiz.edu.tr 7 沙特阿拉伯利雅得国王沙特大学工程学院,POBox 800,利雅得 11421, drskhan@ksu.edu.sa 8 英国爱丁堡龙比亚大学计算工程与建筑环境学院; n.ojaroudiparchin@napier.ac.uk 9 巴勒莫大学工程系,viale delle Scienze BLDG 9,巴勒莫,IT 90128,西西里岛,意大利; patrizia.livreri@unipa.it 10 上法兰西理工大学,微电子和纳米技术研究所 (IEMN) CNRS UMR 8520,ISEN,里尔中央大学,里尔大学,59313 Valenciennes,法国; iyad.dayoub@uphf.fr 11 法国上法兰西学院,F-59313 瓦朗谢讷,法国 12 恩纳科雷大学工程与建筑学院,94100 恩纳,意大利;giovanni.pau@unikore.it 13 魁北克大学国立科学研究院 (INRS),蒙特利尔,魁北克,H5A 1K6,加拿大;sonia.aissa@inrs.ca 14 罗马“Tor Vergata”大学电子工程系,Via del Politecnico 1,00133 罗马,意大利;limiti@ing.uniroma2.it 15 阿拉伯科学、技术和海运学院电子与通信工程系,开罗 11865,埃及;mohamed.fathy@aast.edu