原始文章对基于Tele的监督进行为期8周的可行性研究,以对上肢运动性能和功能能力的剧本练习,Subhasish Chatterjee。Abstrac t Background Telerehabilitation,使偏远地区的患者更容易获得康复,并且在运输挑战方面已被广泛实施,以恢复中风。随着通信技术的发展,Telerehabilitation正在成为一个更可行的选择。仍然未知,但是,这种分娩策略在中风患者的康复方面有多成功。在此前瞻性,单组,治疗性试验中的材料和方法,根据选择标准招募了12例患者。在基线签署了签署的患者同意书后,对患者进行了身体评估,并熟悉患者。患者通过现场会议,每周3天接受了基于电视的监督,每周3天,每周3天进行30分钟的监督。在切换任务之前,有30秒的休息时间。分别在基线,第4周和8周干预的基线时采取了结果指标,FMA UE和中套。计算描述性统计数据以获取基线时的人口统计信息和结果度量。为了评估数据的正态性,采用了Shapiro-Wilk测试。由于发现数据是正态分布的,因此进行了重复测量ANOVA和事后分析,以评估小组内基线,第4周和第8周的数据。Bonferroni校正用于解决多个比较。p值小于0.05被认为表明统计学上的显着差异。结果每个结果度量都表明有很大的改善(p <0.05)。根据组内分析,在FMA UE和Mesupes(p <0.001)中观察到了明显的区别。结论基于Tele的以任务为导向的练习有效地改善了中风患者的上肢运动性能和功能能力。
1 因斯布鲁克大学药学/生药学研究所、因斯布鲁克分子生物科学中心 (CMBI),Innrain 80 / 82, 6020 因斯布鲁克,奥地利; F.Mayr@uibk.ac.at (FM); Veronika.Temml@pmu.ac.at (佛蒙特州); birgit.waltenberger@uibk.ac.at (BW); Stefan.Schwaiger@uibk.ac.at (SS); hermann.stuppner@uibk.ac.at (HS) 2 研究单位分子内分泌学和代谢,亥姆霍兹中心慕尼黑,Ingolstädter Landstraße 1, 85764 Neuherberg,德国; gabriele.moeller@helmholtz-muenchen.de(总经理); adamski@helmholtz-muenchen.de (JA) 3 格赖夫斯瓦尔德大学药学院制药/药物化学系,Friedrich-Ludwig-Jahn-Straße 17, 17489 Greifswald,德国;ulrike.garscha@uni-greifswald.de (UG);jana.fischer@uni-greifswald.de (JF) 4 伯尔尼大学儿童医院儿科内分泌、糖尿病和代谢科,Freiburgstrasse 15, 3010 Bern,瑞士;patrirodcas@gmail.com (PRC); amit.pandey@dbmr.unibe.ch (AVP) 5 伯尔尼大学生物医学研究系,Freiburgstrasse 15, 3010 伯尔尼,瑞士 6 巴塞尔大学药学系分子与系统毒理学分部,Klingelbergstrasse 50, 4056 巴塞尔,瑞士;silvia.inderbinen@unibas.ch (SGI);alex.odermatt@unibas.ch (AO) 7 萨尔州亥姆霍兹药物研究所 (HIPS),药物设计和优化系,E8.1 校区,66123 萨尔布吕肯,德国; rolf.hartmann@helmholtz-hzi.de 8 萨尔大学,制药和药物化学,E8.1 校区,66123 萨尔布吕肯,德国 9 海德堡大学,药学和分子生物技术研究所 (IPMB),药物化学,Im Neuenheimer Feld 364,69120 海德堡,德国;christian.gege@web.de 10 埃德蒙马赫基金会 (FEM) 研究与创新中心,Via Mach 1,38010 San Michele all'Adige,意大利;stefan.martens@fmach.it 11 耶拿弗里德里希席勒大学药学研究所制药/药物化学系,Philosophenweg 14,07743 耶拿,德国; oliver.werz@uni-jena.de 12 遗传学实验学校,慕尼黑工业大学,Emil-Erlenmeyer-Forum 5, 85356 Freising-Weihenstephan, 德国 13 新加坡国立大学杨潞龄医学院生物化学系,8 Medical Drive, Singapore 117597,新加坡 14 药学研究所,萨尔茨堡帕拉塞尔苏斯医科大学制药和药物化学系,Strubergasse 21, 5020 Salzburg, Austria 15 药学/药物化学研究所,因斯布鲁克分子生物科学中心 (CMBI),因斯布鲁克大学,Innrain 80 / 82, 6020 Innsbruck, Austria * 通讯作者:daniela.schuster@pmu.ac.at;电话:+43-699-14420025
Article title: Sentiment Analysis Based on Machine Learning Algorithms: A Comprehensive Study Authors: song jiang[1], Ela Kumar[2] Affiliations: university of houston[1], k l deemed to be university[2] Orcid ids: 0009-0007-8363-7304[1] Contact e-mail: sjiang24@central.uh.edu License information: This work has been在Creative Commons Attribution许可下发布的开放访问http://creativecommons.org/licenses/4.0/,只要适当地引用了原始工作,就可以在任何媒介中不受限制地使用,分发和复制。可以在https://www.scienceopen.com/上找到条件,使用条款和发布政策。预印度语句:本文是预印本,未经同行评审,正在考虑,并提交给ScienceOpen的预印本进行开放的同行评审。doi:10.14293/pr2199.000601.V2预印本在线发布:2024年2月19日
在理论水平上提出了多种阅读障碍的治疗,但直到今天,基于证据的治疗方法仍然很少。当前的可用治疗仅是部分有效的,它们主要将其范围限制在语音或语言技能的培训上。近年来,对阅读障碍的神经系统基础的调查超出了简单的语音框架,正在促进旨在间接提高阅读技能的新的治疗选择,即通过培训更一般的感知和认知技能。我们正在谈论,例如,认知组织中的一般缺陷,尤其是一般的处理速度,口头工作记忆以及计划和抑制行动的能力。
摘要:在电池储能系统(BESS)中部署的锂离子电池(LIB)可以降低发电部门的碳强度并改善环境可持续性。这项研究的目的是使用生命周期评估(LCA)建模,使用来自同行评审的文献以及公共和私人资源的数据,以量化钴的供应链沿供应链沿供应链量化,这是许多类型的LIB中的关键组成部分。该研究试图了解在生命周期阶段的位置,环境影响最高,从而强调了可以提高自由链供应链可持续性的行动。该LCA的系统边界是摇篮到门的。影响评估遵循食谱中点(H)2016。我们假设一个30年的建模期,并在第3年,第7和14年结束时进行了增强,然后在第21年完全替换。在场景中使用了三个炼油厂(中国,加拿大和芬兰),一系列矿石等级(NMC111,NMC532,NMC532,NMC622,NMC811和NCA),以更好地估计其对生命周期的影响。的见解是,根据与矿石等级的逆权法关系,几乎所有途径的影响都会增加;在中国以外的精炼可以将全球变暖潜力(GWP)降低超过12%; GWP对NCA和其他NMC电池化学中使用的钴的影响分别比NMC111低63%和45-74%。按单分析进行分析,海洋和淡水生态毒性是突出的。对于0.3%的矿石等级,加拿大路线的GWP值以58%至65%的速度降低,而芬兰路线的GWP值则下降了71%至76%。统计分析表明,电池中的钴含量是最高的预测因子(R 2 = 0.988),其次是矿石等级(R 2 = 0.966)和精炼位置(R 2 = 0.766),当分别评估相关性时。这里提出的结果指向可以减少环境负担的地区,因此它们有助于政策和投资决策者。
1 华沙医科大学核医学系,02-091 华沙,波兰;leszek.krolicki@wum.edu.pl(LK);jolanta.kunikowska@wum.edu.pl(JK) 2 巴塞尔大学医院神经外科系,4031 巴塞尔,瑞士;dominik.cordier@usb.ch 3 伯尔尼大学医院 Inselspital 神经内科系,3010 伯尔尼,瑞士;nedelina.slavova@gmail.com 4 精神病学和神经病学研究所神经外科系,02-957 华沙,波兰;henryk.koziara@gmail.com 5 欧洲委员会联合研究中心 (JRC),76125 卡尔斯鲁厄,德国;frank.bruchertseifer@ec.europa.eu (FB); alfred.morgenstern@ec.europa.eu (AM) 6 核医学与放射化学,巴塞尔大学医院,4031 巴塞尔,瑞士 7 伯尔尼与巴塞尔大学神经外科系,4001 巴塞尔,瑞士 * 通信地址:adrian.merlo@bluewin.ch
- 参与A6.4机制支持并与不丹的宪法承诺保持在森林覆盖范围内的60%的土地和不丹的国际承诺,以维持碳中性地位。保护现有的林地和林业清除项目的实施可以改善森林,土壤,含水层,流域和生物多样性的健康,包括陆地和水生的生活,从而增强了生态系统服务,例如清洁水供应,木材和非木材林业和清洁空气,从而改善了当地人的生活。- 促进农业污染,气候智能农业,可持续土地管理土地和肥料管理活动应为不丹的粮食和营养安全做出贡献,为可持续发展目标1、2和3。
摘要:尽管青光眼是全球不可逆性失明的主要原因,但其发病机理尚不完全理解,而眼内压(IOP)是靶向这种疾病的唯一可修改的危险因素。已经提出了包括IOP在内的肠道微生物组和青光眼之间的几个关联。越来越多的证据表明,在眼表面上的微生物之间的相互作用称为眼表面微生物组(OSM)和泪液蛋白质(统称为泪液蛋白质组),也可能在诸如青光眼等眼疾病中起作用。这项研究旨在在青光眼患者中找到OSM和撕裂蛋白的特征。32个结膜拭子的全元基因组shot弹枪测序鉴定出肌动杆菌,富公司和蛋白质细菌是同类中的主要门。该物种仅在健康对照中发现,与青光眼患者相比,它们的结膜微生物组可能富含磷脂酶途径的基因。尽管OSM在OSM中存在较小的差异,但与对照组相比,患者表现出与免疫系统相关的许多撕裂蛋白的富集。与OSM相反,这强调了蛋白质组的作用,并可能引起免疫过程在青光眼中的参与。这些发现可能有助于设计针对青光眼和其他相关疾病的新治疗方法。
文章标题:药物重新培训中的机器学习和人工智能 - 挑战和观点作者:Ezequiel Anokian [1],Judith Bernett [2],Adrian Freeman [3],Markus List [2],LucíaPrietoSantamaría[4],Auntorrarhman Tanoli [4] Bonnin [1]分支机构:发现与转化科学(DTS),Clarivate Analytics,巴塞罗那(西班牙)[1],《系统生物学数据科学》,慕尼黑技术大学,慕尼黑技术大学,德国(德国)[2] Biopharmaceuticals R&D,阿斯利康,剑桥(英国)[3],EscuelaTécnicasuperior de gegenierossismorlosinformáticos,Madrid大学(西班牙)大学(西班牙) (FIMM),Hilife,Hilife,赫尔辛基大学(芬兰),Bioicawtech,赫尔辛基(芬兰)[5] [5] Orcid ID:0000-0003-0694-1867 [1] [1],0000-0001-501-5812-8013 [2] 0000-0002-0941-4168 [2], 0000-0003-1545-3515 [4], 0000-0003-2435-9862 [5], 0000-0001-5159-2518 [1] Contact e-mail: Sarah.bonnin@clarivate.com Journal: Drugrxiv review statement:手稿目前正在审查中,应由酌处权对待。手稿提交日期:2024年3月12日关键字:机器学习,神经网络,人工智能,药物repurost