摘要:在两个化学上相同但具有电子不同的过渡金属二进制(TMDS)之间的连接的超快载体动力学仍然很大程度上未知。在这里,我们采用时间分辨的光发射电子显微镜(TR-PEEM)来探测单层 - 型 - 次要人士(1L-ML)WSE 2连接的超快载体动力学。记录了连接的各个组件记录的tr-peem信号揭示了1L-和7L-WSE 2的子PS载体冷却动力学以及在1L-WSE 2上发生的几个PS激子 - 激子 - 激子 - 激子 - 激子。,我们观察到超高界面孔(H)在约0.2 PS时尺度上从1L--至7L-WSE 2转移。在7l-wse 2中,由于载体重组的重组在约100 ps的时间尺度上,其产生的过量H密度衰减。让人联想到耗尽区域的行为,TREEM图像揭示了H密度在7L-WSE 2界面上的积累,衰减长度约为0.60±0.17μm。这些电荷转移和重组动态与从头量量子动力学一致。计算的轨道密度揭示了电荷转移是从延伸到1L和ML区域的基底平面到位于ML区域上的上层平面。这种电荷转移模式与分层材料的化学均匀连接相关,并且构成了另一种载流子停电途径,应在对其ML旁边发现的1L-TMDS的研究中考虑,这是剥落样品中常见的情况。关键字:过渡金属二分法,外侧连接,界面电荷转移,时间分辨的光发射电子显微镜,超快光谱,非绝热的摘要分子动力学L
我可以针对哪些事项提出第 1150 条投诉?首先,按照请求程序解决您的投诉。如果您无法解决问题,您可以考虑向上级提出 1150 条投诉。报告应明确指出投诉针对的上级、投诉的错误以及希望获得的补救。
摘要:自 2018 年以来,学术界对新闻业人工智能的兴趣日益高涨。通过对 2014 年至 2023 年的文献进行系统回顾,本研究讨论了该领域研究的发展以及人工智能如何改变新闻业。旨在通过对学术论文的回顾和对被引用次数最多的文章的定性分析,了解人工智能对新闻业的影响。本研究结合了:对从 Web of Science 和 Scopus 中提取的科学文章进行系统回顾(n = 699)以及对引用次数超过 50 次的文章进行分类内容分析的定性方法(n = 59)。结果(n = 699)突出了阿姆斯特丹大学和圣地亚哥德孔波斯特拉大学的作者的突出地位。美国的作者数量最多:261 人分布在 99 家机构。分类内容分析(n = 59)显示,研究重点关注记者的工作等问题,因为人工智能正在用重复和单调的任务取代记者,这引发了有关记者角色的若干问题。研究结果显示了计算方法的兴起,凸显了人工智能在研究中的普遍性,而这在以前的研究中尚未被探索过。伦理、监管和新闻教育在研究中仍然没有得到充分讨论。
1 华沙医科大学核医学系,02-091 华沙,波兰;leszek.krolicki@wum.edu.pl(LK);jolanta.kunikowska@wum.edu.pl(JK) 2 巴塞尔大学医院神经外科系,4031 巴塞尔,瑞士;dominik.cordier@usb.ch 3 伯尔尼大学医院 Inselspital 神经内科系,3010 伯尔尼,瑞士;nedelina.slavova@gmail.com 4 精神病学和神经病学研究所神经外科系,02-957 华沙,波兰;henryk.koziara@gmail.com 5 欧洲委员会联合研究中心 (JRC),76125 卡尔斯鲁厄,德国;frank.bruchertseifer@ec.europa.eu (FB); alfred.morgenstern@ec.europa.eu (AM) 6 核医学与放射化学,巴塞尔大学医院,4031 巴塞尔,瑞士 7 伯尔尼与巴塞尔大学神经外科系,4001 巴塞尔,瑞士 * 通信地址:adrian.merlo@bluewin.ch
1 伯尔尼大学社会与预防医学研究所,3012 伯尔尼,瑞士;eva.pedersen@ispm.unibe.ch (ESLP);maria.mallet@ispm.unibe.ch (MCM);yin.lam@ispm.unibe.ch (YTL);myrofora.goutaki@ispm.unibe.ch (MG) 2 伯尔尼大学健康科学研究生院,3012 伯尔尼,瑞士 3 意大利 Ciliare Primaria Sindrome di Kartagener Onlus 协会,70124 巴里,意大利;saradcp@virgilio.it 4 ADCP 协会,42218 Saint-Étienne,法国;icizeau@cegetel.net 5 PCD Support UK,伦敦 MK18 9DX,英国; fiona.copeland@stonac.co.uk 6 Asociación Española de Pacientes con Discinesia Ciliar Primaria, Santo Ángel 30151, 菲律宾; asociaciondcpes@gmail.com 7 PCD 基金会,明尼阿波利斯,明尼苏达州 55420,美国; michelemanion@gmail.com 8 原发性纤毛运动障碍中心,NIHR 生物医学研究中心,南安普敦大学医院 NHS 基金会信托,南安普敦 SO16 6YD,英国; Amanda-lea.harris@uhs.nhs.uk (ALH); jlucas1@soton.ac.uk (JSL) 9 南安普顿大学医学院,临床和实验医学学院,南安普顿 SO17 1BJ,英国 10 费德里科二世大学转化医学科学系,80138 那不勒斯,意大利; santamar@unina.it 11 伯尔尼大学医院儿科系儿科呼吸医学和过敏学科,伯尔尼大学医院,伯尔尼大学,3010 瑞士 * 通讯地址:Claudia.kuehni@ispm.unibe.ch;电话:+41-31-684-35-07 † COVID-PCD 患者咨询小组(按字母顺序):Sara Bellu,意大利 Kartagener Onlus 原发性纤毛诊断协会,意大利;Isabelle Cizeau,法国 ADCP 协会;Fiona Copeland,英国 PCD 支持;Katie Dexter,英国 PCD 支持;Lucy Dixon,英国 PCD 支持;Trini L ó pez Fern á ndez,西班牙原发性纤毛诊断协会Susanne Grieder,Selbsthilfegruppe Primäre Ciliäre Dyskinesie,瑞士; Catherine Kruljac,澳大利亚 PCD 原发性纤毛运动障碍,澳大利亚; Michele Manion,PCD 基金会,美国; Bernhard Rindlisbacher,Selbsthilfegruppe Primäre Ciliäre Dyskinesie,瑞士; Hansruedi Silberschmidt,Verein Kartagener Syndrom und Primäre Ciliäre Dyskinesie,德国。
随着芝加哥公立学校 (CPS) 自行实施职业技术教育 (CTE) 计划暂停以及 ISBE 大学和职业道路认可 (CCPE) 的持续实施,CTU PAVE 委员会提议对第 18 条提出以下集体谈判协议 (CBA) 要求,以解决 CTU CTE 成员每天遇到的问题,即提供有意义的以学生为中心、基于项目的体验式学习任务,通过 CCPE 整合让学生做好职业准备并与所有其他学术科目相关。我们善意分享这些建议,以改进 CPS 提供的 CTE 计划。
1 因斯布鲁克大学药学/生药学研究所、因斯布鲁克分子生物科学中心 (CMBI),Innrain 80 / 82, 6020 因斯布鲁克,奥地利; F.Mayr@uibk.ac.at (FM); Veronika.Temml@pmu.ac.at (佛蒙特州); birgit.waltenberger@uibk.ac.at (BW); Stefan.Schwaiger@uibk.ac.at (SS); hermann.stuppner@uibk.ac.at (HS) 2 研究单位分子内分泌学和代谢,亥姆霍兹中心慕尼黑,Ingolstädter Landstraße 1, 85764 Neuherberg,德国; gabriele.moeller@helmholtz-muenchen.de(总经理); adamski@helmholtz-muenchen.de (JA) 3 格赖夫斯瓦尔德大学药学院制药/药物化学系,Friedrich-Ludwig-Jahn-Straße 17, 17489 Greifswald,德国;ulrike.garscha@uni-greifswald.de (UG);jana.fischer@uni-greifswald.de (JF) 4 伯尔尼大学儿童医院儿科内分泌、糖尿病和代谢科,Freiburgstrasse 15, 3010 Bern,瑞士;patrirodcas@gmail.com (PRC); amit.pandey@dbmr.unibe.ch (AVP) 5 伯尔尼大学生物医学研究系,Freiburgstrasse 15, 3010 伯尔尼,瑞士 6 巴塞尔大学药学系分子与系统毒理学分部,Klingelbergstrasse 50, 4056 巴塞尔,瑞士;silvia.inderbinen@unibas.ch (SGI);alex.odermatt@unibas.ch (AO) 7 萨尔州亥姆霍兹药物研究所 (HIPS),药物设计和优化系,E8.1 校区,66123 萨尔布吕肯,德国; rolf.hartmann@helmholtz-hzi.de 8 萨尔大学,制药和药物化学,E8.1 校区,66123 萨尔布吕肯,德国 9 海德堡大学,药学和分子生物技术研究所 (IPMB),药物化学,Im Neuenheimer Feld 364,69120 海德堡,德国;christian.gege@web.de 10 埃德蒙马赫基金会 (FEM) 研究与创新中心,Via Mach 1,38010 San Michele all'Adige,意大利;stefan.martens@fmach.it 11 耶拿弗里德里希席勒大学药学研究所制药/药物化学系,Philosophenweg 14,07743 耶拿,德国; oliver.werz@uni-jena.de 12 遗传学实验学校,慕尼黑工业大学,Emil-Erlenmeyer-Forum 5, 85356 Freising-Weihenstephan, 德国 13 新加坡国立大学杨潞龄医学院生物化学系,8 Medical Drive, Singapore 117597,新加坡 14 药学研究所,萨尔茨堡帕拉塞尔苏斯医科大学制药和药物化学系,Strubergasse 21, 5020 Salzburg, Austria 15 药学/药物化学研究所,因斯布鲁克分子生物科学中心 (CMBI),因斯布鲁克大学,Innrain 80 / 82, 6020 Innsbruck, Austria * 通讯作者:daniela.schuster@pmu.ac.at;电话:+43-699-14420025
在1930年代,发现聚(甲基丙烯酸甲酯)(PMMA)(PMMA)的两名英国化学家,包括罗兰山和约翰·克劳·福特。但是,其处女作的实施是由德国化学家奥托·罗姆(Otto Rohm)[1]于1934年。PMMA通常称为丙烯酸树脂,通常是通过甲基丙烯酸甲酯(MMA)的自由基聚合产生的,尽管阴离子和协调聚合方法也是可行的替代方法。PMMA是一种跨父型热塑性材料,表现出理想的特性,例如抗冲击性,耐候性和耐化学性。由于其光学清晰度和耐用性,它通常被用作无机玻璃的替代品[2]。PMMA因其出色的光学支持而被认可,这使其成为光学应用的绝佳聚合物。它具有92%的显着可见光透射率,超过了玻璃。此外,PMMA具有承受紫外线(UV)辐射和恶劣室外条件的能力,使其成为理想的玻璃替代品(见图1)。PMMA进一步证明了有利的属性是低成本,无毒,环保,可回收和高度生物相容性的聚合物。这些能力的特征推动了PMMA在
摘要 :大多数抗菌肽 (AMP) 和抗癌肽 (ACP) 折叠成膜破坏性阳离子两亲性 α 螺旋,但其中许多也具有不可预测的溶血性和毒性。在这里,我们利用循环神经网络 (RNN) 区分活性与非活性、非溶血与溶血 AMP 和 ACP 的能力,以发现新的非溶血性 ACP。我们的发现流程包括:1) 使用生成 RNN 或遗传算法生成序列,2) RNN 分类活性和溶血,3) 选择序列新颖性、螺旋性和两亲性,以及 4) 合成和测试。对 33 种肽的实验评估产生了 11 种活性 ACP,其中 4 种不溶血,其特性类似于天然 ACP lasioglossin III。这些实验展示了机器学习直接指导发现非溶血性 ACP 的第一个例子。
文章标题:人工智能(AI)在医疗保健中的应用:综述 作者:Mohammed Yousef Shaheen[1] 所属机构:沙特阿拉伯[1] Orcid ids:0000-0002-2993-2632[1] 联系电子邮件:yiroyo1235@tmednews.com 许可信息:本作品已根据知识共享署名许可 http://creativecommons.org/licenses/by/4.0/ 以开放获取的方式发表,允许在任何媒体中不受限制地使用、分发和复制,只要正确引用原始作品即可。使用条款和出版政策可在 https://www.scienceopen.com/ 上找到。预印本声明:本文为预印本,尚未经过同行评审,正在考虑并提交给 ScienceOpen Preprints 进行开放同行评审。DOI:10.14293/S2199-1006.1.SOR-.PPVRY8K.v1 预印本首次在线发布:2021 年 9 月 25 日