Xiao Mi, Matteo Ippoliti, Chris Quintana, Ami Greene, Zijun Chen, Jonathan Gross, Frank Arute, Kunal Arya, Juan Atalaya, Ryan Babbush, Joseph C. Bardin, Joao Basso, Andreas Bengtsson, Alexander Bilmes, Alexandre Bourassa, Leon Brill, Michael Broughton, Bob Broughley, David Burkett, Bull, A.B. nell, Benjamin Chiaro, Roberto Collins, William Courtney, Dripto Debroy, Sean Demura, Alan R. Derk, Andrew Dunsworth, Daniel Eppens, Catherine Erickson, Edward Farhi, Austin G. Fowler, Brooks Foxen, Craig Gidney, Marissa Giustina, Matthew P. Harrigan, Sean D. Harring, Hilton, Hoy, T. A. , Ashley Huff, William J. Huggins, L. B. Ioffe, Sergei V. Isakov, Justin Iveland, Evan Jeffrey, Zhang Jiang, Cody Jones, Dvir Kafri, Tanuj Khattar, Seon Kim, Alexei Kitaev, Paul V. Klimov, Alexander N. Korotkov, Fedor Kostritsa, David Landho, Joel, Lee, Lee, Lee Lucero, Orion Martin, Jarrod R. McClean, Trevor McCourt, Matt McEwen, Kevin C. Miao, Masoud Mohseni, Shirin Montazeri, Wojciech Mruczkiewicz, Ofer Naaman, Matthew Neeley, Charles Neill, Michael Newman, Murphy Yuezhen Niu, Thomas E. O'Brien, Alex O'Brien, Othov, Andre, Pethor, Andre and Pat. Nicholas C. Rubin, Daniel Sank, Kevin J. Satzinger, Vladimir Shvarts, Yuan Su, Doug Strain, Marco Szalay, Matthew D. Trevithick, Benjamin Villalonga, Theodore White, Z. Jamie Yao, Ping Yeh, Juhwan Yoo, Adam Zalcman, Hartmut Neven, Sergio Vaxo, Kelly, Kelly, Julian and Julian n, S. L. Sondhi, Roderich Moessner, Kostyantyn Kechedzhi, Vedika Khemani & Pedram Roushan
量子计算对气候的潜在影响和环境非常重要,并且在此阶段采取措施塑造其对可持续性和积极影响的轨迹对于负责任的发展至关重要。在这个问题中,我们建议进行调查的领域,以建立共同的理解并提高可持续发展。在理解量子计算的环境和气候影响时需要考虑两个维度。首先是在生命周期中开发和使用量子计算机的直接环境影响,包括资源需求和碳足迹(Arora和Kumar,2024年)。第二是针对气候解决方案的量子计算用例的可能性(Berger等,2021; Paudel等,2022; Ho等,2024)。尽管已经有了研究量子计算的能源需求的初步步骤(参见Auffèves,2022; Meier和Yamasaki,2023),但我们需要更好地了解开发,使用和处理量子计算机的全部生命周期的环境影响。这包括能源和水消耗,碳足迹,废物处理和回收以及矿物质的因素。这项最初的研究表明,与高性能计算(HPC)相比,量子计算可能会提供优势,从而降低环境成本。例如,关于量子计算的量子计算概念每秒的经典概念仍然缺乏社区共识(例如,参见Nayak;坎贝尔;替代建议)。一些突出显示的示例(绝不是详尽的列表)是:尽管当前的期望是量子计算机可能需要明显低于其经典的能量来解决某些类别的问题(Arute等人,2019; Meier和Yamasaki,2023),但首先有必要定义和同意指标以量化这些资源以正确地声称这一优势。结果,量化量子计算机的能源效率是一个挑战。为此定义社区所接受的指标和其他与环境相关的指标仍然是一个悬而未决的问题。此外,例如,量子计算系统的支持要求,例如低温冷却本身是资源密集的,因此必须考虑到计算总体资源需求时。另一个开放的问题是资源利用率如何用于有用的量子计算机。要考虑的第二维度是量子计算解决气候和其他环境挑战的潜力。
Xiao Mi 1.11 , Matteo Ippoliti 2.11 , Chris Quintana 1 , Ami Greene 1 , Zijun Chen 1 , Jonathan Gross 1 , Frank Arute 1 , Kunal Arya 1 , Juan Atalaya 1 , Ryan Babbush 1 , Joseph C. Bardin 1.3 , Joao Basso 1 , Andreas Bengtsson 1 , Alexander Bilmes 1 , Alexandre Bourassa 1.4 , Leon Brill 1 , Michael Broughton 1 , Bob B. Buckley 1 , David A. Buell 1 , Brian Burkett 1 , Nicholas Bushnell 1 , Benjamin Chiaro 1 , Roberto Collins 1 , William Courtney 1 , Dripto Debroy 1 , Sean Demura 1 , Alan R. Derk 1 , Andrew Dunsworth 1 , Daniel Eppens 1 , Catherine Erickson 1 , Edward Farhi 1 , Austin G. Fowler 1 , Brooks Foxen 1 , Craig Gidney 1 , Marissa Giustina 1 , Matthew P. Harrigan 1 , Sean D. Harrington 1 , Jeremy Hilton 1 , Alan Ho 1 , Sabrina Hong 1 , Trent Huang 1 , Ashley Huff 1 , William J. Huggins 1 , L. B. Ioffe 1 , Sergei V. Isakov 1 , Justin Iveland 1 , Evan Jeffrey 1 , Zhang Jiang 1 , Cody Jones 1 , Dvir Kafri 1 , Tanuj Khattar 1 , Seon Kim 1 , Alexei Kitaev 1 , Paul V. Klimov 1 , Alexander N. Korotkov 1,5 , Fedor Kostritsa 1 , David Landhuis 1 , Pavel Laptev 1 , Joonho Lee 1.6 , Kenny Lee 1 , Aditya Locharla 1 , Erik Lucero 1 , Orion Martin 1 , Jarrod R. McClean 1 , Trevor McCourt 1 , Matt McEwen 1.7 , Kevin C. Miao 1 , Masoud Mohseni 1 , Shirin Montazeri 1 , Wojciech Mruczkiewicz 1 , Ofer Naaman 1 , Matthew Neeley 1 , Charles Neill 1 , Michael Newman 1 , Murphy Yuezhen Niu 1 , Thomas E. O'Brien 1 , Alex Opremcak 1 , Eric Ostby 1 , Balint Pato 1 , Andre Petukhov 1 , Nicholas C. Rubin 1 , Daniel Sank 1 , Kevin J. Satzinger 1 , Vladimir Shvarts 1 , Yuan Su 1 , Doug Strain 1 , Marco Szalay 1 , Matthew D. Trevithick 1 , Benjamin Villalonga 1 , Theodore White 1 , Z. Jamie Yao 1 , Ping Yeh 1 , Juhwan Yoo 1 , Adam Zalcman 1 , Hartmut Neven 1 , Sergio Boixo 1 , Vadim Smelyanskiy 1 , Anthony Megrant 1 , Julian Kelly 1 , Yu Chen 1 , S. L. Sondhi 8,9 , Roderich Moessner 10 ,
量子计算在从量子计算机读取信息时尤其重要(Aaronson,2008 年)。量子计算机可以同时计算和测试大量假设组合,而不是按顺序计算和测试(S.-S. Li 等人,2001 年)。此外,一些量子算法可以设计成用比传统算法少得多的步骤解决问题(其复杂性较低)。因此,量子计算可能代表未来几年现代 IT 的重大突破,并可能开启向“第五次工业革命”的过渡(Hadda & Schinasi-Halet,2019 年)。首批实验显示出令人鼓舞的结果,例如谷歌在 2019 年进行的实验,该公司声称已经实现了所谓的量子霸权(IBM“量子优势”)(Arute 等人,2019 年)。在一项人工实验中,他们证明可编程量子设备可以在可行的时间内解决传统计算机无法解决的问题。然而,谷歌量子计算机解决的任务是根据所使用的特定量子硬件定制的,没有实际应用。尽管如此,这仍然是一个重要的概念证明。此外,2020 年,中国科学家声称已经建造了一台量子计算机,其执行特定计算的速度比世界上最先进的超级计算机快约 100 万亿倍(Zhong et al., 2020)。鉴于目前的发展状况,专家预计量子计算可以提供前所未有的优势,特别是在优化、人工智能和模拟领域(Langione et al., 2019; Ménard et al., 2020)。分子模拟(用于化学和制药行业)很可能成为量子计算机的首批实际应用之一。这是因为分子直接遵循量子力学定律,所以使用量子计算机是模拟它们最自然的方式。其他可能很快受益的行业包括金融业、运输和物流业、全球能源和材料业,以及气象学或网络安全等领域(Gerbert & Ruess,2018 年;Langione 等人,2019 年;Ménard 等人,2020 年)。然而,迄今为止,量子计算在物理学和计算机科学领域仍存在大量未解决的挑战,从硬件架构和数据管理到应用软件和算法,这需要在所有这些领域及其他领域进行基础研究(Almudever 等人,2017 年)。为了指导信息系统(IS)研究,本基础提供了量子计算的基本概念并描述了研究机会。因此,我们在第二部分简要概述了量子计算机系统及其量子计算机的三个层:硬件、系统软件和应用层。第三部分介绍了量子计算的潜在应用领域。1在此基础上,
量子计算在从量子计算机读取信息时尤其重要(Aaronson,2008 年)。量子计算机可以同时计算和测试大量假设组合,而不是按顺序计算和测试(S.-S. Li 等人,2001 年)。此外,一些量子算法可以设计成用比传统算法少得多的步骤解决问题(其复杂性较低)。因此,量子计算可能代表未来几年现代 IT 的重大突破,并可能开启向“第五次工业革命”的过渡(Hadda & Schinasi-Halet,2019 年)。首批实验显示出令人鼓舞的结果,例如谷歌在 2019 年进行的实验,该公司声称已经实现了所谓的量子霸权(IBM“量子优势”)(Arute 等人,2019 年)。在一项人工实验中,他们证明可编程量子设备可以在可行的时间内解决传统计算机无法解决的问题。然而,谷歌量子计算机解决的任务是根据所使用的特定量子硬件定制的,没有实际应用。尽管如此,这仍然是一个重要的概念证明。此外,2020 年,中国科学家声称已经建造了一台量子计算机,其执行特定计算的速度比世界上最先进的超级计算机快约 100 万亿倍(Zhong et al., 2020)。鉴于目前的发展状况,专家预计量子计算可以提供前所未有的优势,特别是在优化、人工智能和模拟领域(Langione et al., 2019; Ménard et al., 2020)。分子模拟(用于化学和制药行业)很可能成为量子计算机的首批实际应用之一。这是因为分子直接遵循量子力学定律,所以使用量子计算机是模拟它们最自然的方式。其他可能很快受益的行业包括金融业、运输和物流业、全球能源和材料业,以及气象学或网络安全等领域(Gerbert & Ruess,2018 年;Langione 等人,2019 年;Ménard 等人,2020 年)。然而,迄今为止,量子计算在物理学和计算机科学领域仍存在大量未解决的挑战,从硬件架构和数据管理到应用软件和算法,这需要在所有这些领域及其他领域进行基础研究(Almudever 等人,2017 年)。为了指导信息系统(IS)研究,本基础提供了量子计算的基本概念并描述了研究机会。因此,我们在第二部分简要概述了量子计算机系统及其量子计算机的三个层:硬件、系统软件和应用层。第三部分介绍了量子计算的潜在应用领域。1在此基础上,
量子信息科学研究物理系统量子态的制备和控制,以实现信息传输和操控。该领域包括量子通信、量子计算和量子信息。人们普遍认为,量子信息科学可能会引发通信、计算和信息领域新一轮的技术创新(详情请参阅 Wang 2012、Wang et al. 2016 和 Wang & Song 2020)。量子计算是量子信息科学的瑰宝,在从计算机科学到物理学、从化学到工程学的各个领域引起了越来越多的关注和极大关注。从理论上讲,已经证明量子计算算法在解决某些棘手的计算问题时可以比最佳或最优的经典算法快得多。实验中,谷歌量子 AI 团队(AI 代表人工智能)为其新创建的量子计算机设计了一个硬采样问题,并成功地在维度 2 53 ≈ 10 16 的计算空间中进行了采样计算,这实际上超出了目前最快的经典超级计算机的能力范围(详情见第 4.1 节,Arute 等人,2019 年,以及 Zhong 等人,2020 年)。媒体经常报道称,量子计算机需要 3 分 20 秒才能完成的计算,世界上最强大的超级计算机却需要 10,000 年。这是一个通常被称为量子(计算)至上的概念的例子——证明量子计算机可以超越经典计算机——并且需要硬件构造、软件设计以及问题创建和实施的结合。由于目前无法使用大规模量子计算机来实现更快的量子算法,以完成诸如破解可以抵御任何传统计算机攻击的密码系统之类的困难计算任务,因此,证明量子至上性并提供实验证据来支持量子计算优于传统计算的(理论)主张非常重要。由于量子物理本质上是随机的,因此量子计算本质上也是随机的。因此,统计学可以在量子计算中发挥重要作用,这反过来又为计算统计学和数据科学提供了巨大的潜力。由于我们在本文中的目标是概述量子计算的统计方面,因此我们介绍了量子计算的基本概念,并介绍了量子计算中遇到的许多统计问题的一些选定相关主题。在整个概述中,我们说明了统计学和量子计算之间的相互作用。特别是,我们的重点是应用新的量子资源来完成传统技术非常慢或无法实现的统计计算任务,以及使用量子方法可能带来的统计和机器学习的新理论、方法和计算技术。关于量子密码学主题,例如量子密码破译算法和量子加密设备,我们请读者参阅 Wang (2012) 和 Wang & Song (2020)。本文的其余部分如下。第 2 节简要介绍量子力学和量子概率与统计。第 3 节回顾了量子计算的基本概念和量子计算的不同架构。第 4 节介绍了两个关于量子计算霸权的里程碑式项目,涉及玻色子采样和随机量子电路。第 5 节说明了量子退火和相关的统计分析。第 6 节介绍了量子深度学习,并描述了使用玻尔兹曼机 (BM) 的经典方法和量子方法。第 7 节作了总结。
VIII。 参考文献[1] Preskill,J。量子计算40年后。 Arxiv 2021,Arxiv:2106.10522。 [2] Arute,f。; Arya,K。; Babbush,r。培根,d。; Bardin,J.C。; Barends,R。; Martinis,J.M。 使用可编程超导处理器的量子至上。 自然2019,574,505–510。 [CrossRef] [PubMed] [3] Bova,F。; Goldfarb,A。; Melko,R.G。 量子计算的商业应用。 EPJ量子技术。 2021,8,2。 [CrossRef] [PubMed] [4] Castelvecchi,D。从量子黑客中拯救互联网的种族。 自然2022,602,198–201。 [CrossRef] [PubMed] [5] Steve,M。网络犯罪,每年在2025年到达世界10.5万亿美元。 网络犯罪杂志。 2020年11月13日。 在线可用:https://cybersecurityventures.com/cybercrime-damages-6---------- triml-2021(于2022年8月8日访问)。 [6] Cornea,A.A。; Obretin,A.M。关于量子计算环境中软件开发迁移的安全问题;布加勒斯特经济学大学信息学和经济控制学系:罗马尼亚布加勒斯特,2002年;第5卷,pp。 12–17,ISSN 2619-9955。 [Crossref] [7] Rozell,D.J。 现金是国王。 自然2022,16,2022。 [CrossRef] [PubMed] [8] De Wolf,R。量子计算机对社会的潜在影响。 道德信息。 技术。 2017,19,271。 [Crossref] [9] Grimes,R.A。加密启示录:准备量子计算破坏当今加密的一天;约翰·威利(John Wiley&Sons):美国新泽西州霍博肯,2019年。 Arxiv 2022,Arxiv:2205.02761。VIII。参考文献[1] Preskill,J。量子计算40年后。Arxiv 2021,Arxiv:2106.10522。[2] Arute,f。; Arya,K。; Babbush,r。培根,d。; Bardin,J.C。; Barends,R。; Martinis,J.M。使用可编程超导处理器的量子至上。自然2019,574,505–510。[CrossRef] [PubMed] [3] Bova,F。; Goldfarb,A。; Melko,R.G。量子计算的商业应用。EPJ量子技术。 2021,8,2。 [CrossRef] [PubMed] [4] Castelvecchi,D。从量子黑客中拯救互联网的种族。 自然2022,602,198–201。 [CrossRef] [PubMed] [5] Steve,M。网络犯罪,每年在2025年到达世界10.5万亿美元。 网络犯罪杂志。 2020年11月13日。 在线可用:https://cybersecurityventures.com/cybercrime-damages-6---------- triml-2021(于2022年8月8日访问)。 [6] Cornea,A.A。; Obretin,A.M。关于量子计算环境中软件开发迁移的安全问题;布加勒斯特经济学大学信息学和经济控制学系:罗马尼亚布加勒斯特,2002年;第5卷,pp。 12–17,ISSN 2619-9955。 [Crossref] [7] Rozell,D.J。 现金是国王。 自然2022,16,2022。 [CrossRef] [PubMed] [8] De Wolf,R。量子计算机对社会的潜在影响。 道德信息。 技术。 2017,19,271。 [Crossref] [9] Grimes,R.A。加密启示录:准备量子计算破坏当今加密的一天;约翰·威利(John Wiley&Sons):美国新泽西州霍博肯,2019年。 Arxiv 2022,Arxiv:2205.02761。EPJ量子技术。2021,8,2。[CrossRef] [PubMed] [4] Castelvecchi,D。从量子黑客中拯救互联网的种族。自然2022,602,198–201。[CrossRef] [PubMed] [5] Steve,M。网络犯罪,每年在2025年到达世界10.5万亿美元。网络犯罪杂志。2020年11月13日。在线可用:https://cybersecurityventures.com/cybercrime-damages-6---------- triml-2021(于2022年8月8日访问)。[6] Cornea,A.A。; Obretin,A.M。关于量子计算环境中软件开发迁移的安全问题;布加勒斯特经济学大学信息学和经济控制学系:罗马尼亚布加勒斯特,2002年;第5卷,pp。12–17,ISSN 2619-9955。 [Crossref] [7] Rozell,D.J。 现金是国王。 自然2022,16,2022。 [CrossRef] [PubMed] [8] De Wolf,R。量子计算机对社会的潜在影响。 道德信息。 技术。 2017,19,271。 [Crossref] [9] Grimes,R.A。加密启示录:准备量子计算破坏当今加密的一天;约翰·威利(John Wiley&Sons):美国新泽西州霍博肯,2019年。 Arxiv 2022,Arxiv:2205.02761。12–17,ISSN 2619-9955。[Crossref] [7] Rozell,D.J。现金是国王。自然2022,16,2022。[CrossRef] [PubMed] [8] De Wolf,R。量子计算机对社会的潜在影响。道德信息。技术。2017,19,271。[Crossref] [9] Grimes,R.A。加密启示录:准备量子计算破坏当今加密的一天;约翰·威利(John Wiley&Sons):美国新泽西州霍博肯,2019年。Arxiv 2022,Arxiv:2205.02761。[10] Schiffer,B.F.量子计算机作为生存风险的放大器。11。Casati,N.M。使用量子计算机在了解文化和全球业务成功中。全球企业的文化;帕尔格雷夫·麦克米伦(Palgrave Macmillan):瑞士夏(Cham),2021年; pp。77–103。 [11] Scott,F.,iii。 量子作为服务的买家指南:用于租用的Qubits。 在线提供:https://www.zdnet.com/article/abuyers-guide-to-quantum-as-a-a-service-qubits-qubits-for-hire/(2021年5月21日访问)。 [12] Sharma,S.K。 ; Khaliq,M。量子计算在软件取证和数字证据中的作用:问题和挑战。 限制。 未来应用。 量子加密。 2021,169–185。 [13] Raheman,F。; Bhagat,T。; Vermeulen,b。 Van Daele,P。零漏洞计算(ZVC)是否有可能? 检验假设。 未来互联网2022,14,238。 [CrossRef] [14] Alagic,G。; Alagic,G。; Alperin-Sheriff,J。; Apon,d。;库珀,D。; dang,q。 Smith-Tone,D。关于NIST量子后加密标准化过程的第一轮的状态报告;美国国家标准技术研究所美国商务部:华盛顿特区,美国,2019年。 在线提供:https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=927303(2022年8月8日访问)。 [15] Hoschek,M。量子安全性和6G关键基础架构。 serb。 J. Eng。 托管。 2021,6,1-8。 [CrossRef] [16] Lennart,B。;本杰明,K。 Niko,M。; Anika,P。; Henning,S。何时以及如何为量子加密后做准备。77–103。[11] Scott,F.,iii。量子作为服务的买家指南:用于租用的Qubits。在线提供:https://www.zdnet.com/article/abuyers-guide-to-quantum-as-a-a-service-qubits-qubits-for-hire/(2021年5月21日访问)。[12] Sharma,S.K。; Khaliq,M。量子计算在软件取证和数字证据中的作用:问题和挑战。限制。未来应用。量子加密。2021,169–185。[13] Raheman,F。; Bhagat,T。; Vermeulen,b。 Van Daele,P。零漏洞计算(ZVC)是否有可能?检验假设。未来互联网2022,14,238。[CrossRef] [14] Alagic,G。; Alagic,G。; Alperin-Sheriff,J。; Apon,d。;库珀,D。; dang,q。 Smith-Tone,D。关于NIST量子后加密标准化过程的第一轮的状态报告;美国国家标准技术研究所美国商务部:华盛顿特区,美国,2019年。在线提供:https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=927303(2022年8月8日访问)。[15] Hoschek,M。量子安全性和6G关键基础架构。serb。J. Eng。 托管。 2021,6,1-8。 [CrossRef] [16] Lennart,B。;本杰明,K。 Niko,M。; Anika,P。; Henning,S。何时以及如何为量子加密后做准备。J. Eng。托管。2021,6,1-8。[CrossRef] [16] Lennart,B。;本杰明,K。 Niko,M。; Anika,P。; Henning,S。何时以及如何为量子加密后做准备。麦肯锡数字。2022年5月4日。在线提供:https://www.mckinsey.com/business-functions/mckinsey-digital/our-insights/when-and-how-to-to-prepor-for-prepor-for-post-post-quantum-cryptography(于2022年8月8日访问)。[17]计算机安全研究中心。量子密码学PQC:研讨会和时间表。nist; 2022年7月7日。在线提供:https://csrc.nist.gov/projects/post-quantum-cryptography/workshops-and-timeline(2022年8月8日访问)。[18] Edlyn,T。有关抗量子的加密标准的NIST公告。立即行动!隐性。2022年7月6日。在线提供:https://www.cryptomathic.com/news-events/blog/the-nist-anist-annoception-on-quantumresistant-cryptography-standards-isandards-is-is-in.-act.-act-now(于2022年8月8日访问)。[19] Mathew,S。旨在防止量子黑客的加密很容易破裂。新科学家。2022年3月8日。在线提供:https://www.newscientist.com/article/2310369-Encryption-meant-to-protect-agep procect-against-quantum-hackers-is-is-seasily-cracked/(于2022年5月28日访问)。
