1 比利希姆创新中心,METU Technopolis,安卡拉 06510,土耳其 2 恰卡亚大学,建筑学院,建筑系,安卡拉 06530,土耳其 3 阿克德尼兹大学,建筑学院,建筑系,安塔利亚 07070,土耳其 4 阿克德尼兹大学,技术职业高中,安塔利亚 07070,土耳其 重点:图形/表格摘要 人工神经网络和深度学习方法 估计结构不规则性的新方法 深度学习和图像处理方法在抗震建筑设计中的应用 图 A. 图形摘要目的:本研究的目的是通过使用深度学习和图像处理方法,创建一个不规则控制助手 (IC Assitant),它可以为建筑师提供有关结构系统决策是否符合抗震规定的一般信息,这些信息可在设计过程的早期阶段通过深度学习和图像处理方法进行。这样,在设计的早期阶段就能做出正确的决策,并防止在实施项目阶段可能发生的意外修改。理论与方法:在本研究中,我们提出了一个不规则控制助手 (IC Assitant),它可以为建筑师提供有关土耳其地震规范中定义的结构系统不规则性的一般信息,它是使用深度学习和图像处理方法开发的。PYTHON 是学术领域最常用的编程语言之一,PYTHON IDLE(集成开发和学习环境)用于创建应用程序。Image AI 工作库用于制作此软件产品。结果:向 IC 助手展示了以前没有给过机器的新计划,并询问这些计划中的结构系统是否按照地震法规的定义是规则的还是不规则的。结果表明,DK 助手可以成功地提供有关任何结构系统的规则性百分比的信息。结论:研究表明,深度学习和图像处理方法可用于在建筑设计过程的早期阶段发现结构不规则性。