第二个亚洲VCSEL日是专门用于垂直腔体发射激光器(VCSEL)的首要事件。基于2023年首届活动的成功,该会议将聚集来自Asai的主要科学家,工程师和行业专家,并组成了德国和俄罗斯的两名嘉宾演讲者,以分享其最新的研究,创新以及VCSEL技术领域的应用。
可持续农业生产力的概念旨在对农业表现进行更全面的看法,以确保可持续性的环境和社会维度纳入农业生产力的计算中。根据经合组织的生产率,可持续性和弹性框架(经合组织,2020 [4]),可持续的农业生产率增长是指在短期和长期内与自然资本保存兼容的生产率增长。SPG的主要驱动因素是在气候变化下对自然资源的创新,结构变化和更好的管理。可持续的农业生产力增长也被更广泛地理解为农业生产力增长,“促进社会,环境和经济发展目标,以满足当前和后代的粮食和营养需求”(SPG Coalition,n.d。[5])。因此,农业中的可持续生产力增长(SPG)在确保食品系统可以实现涵盖经济,环境和社会可持续性的各种目标方面起着关键作用。在对SPG的经济和环境方面以及如何衡量它们的经济和环境方面有一个共同的了解。与农业有关的社会问题仍然是一个关键的政策问题,但各国的定义和衡量标准仍然存在显着差异(Asai andAntón,2024 [6])。
为期两天的程序在此处发布。2023年12月16日研讨会=============================================================================================== Ttile of Lecture =================================================================================================== 9:30- 9:35 Arikawa Kentaro (SOKENDAI Executive Director) Opening Remarks 9:35-10:20 Asai Kiyoshi (The University of Tokyo, Professor) Genomic information deciphered by language models 10:25-11:10 Kawaguchi Risa (Kyoto University, Junior Associate Professor) Deciphering epigenetic landscapes for variations in gene regulatory networks in mammals 11:15-12:00江西“乔治”张(密歇根大学,马歇尔·W。环境改编的基因座,在真核生尼伦堡大学教授中)12:00-12:55午餐休息12:55-13:40 Heng Lie(Heng Lie Tournebize (French National Centre for Scientific Research / De-composing evolution: on population structure and human history University of Toulouse Paul Sabatier, Postdoctoral Researcher) 14:30-14:55 Break 14:55-15:40 Iwasaki Wataru (The University of Tokyo, Professor) Bioinformatics for revealing rules behind genome evolution 15:45-16:45 Richard Durbin (University of Cambridge,教授)从生命之树跨越高质量基因组测序的见解16:45-16:50 Arikawa Kentaro(Sokendai执行董事)关闭言论17:00-19:00接待===============================================================================================
源文档的。 此类源归因042方法使用户可以检查输出的043可靠性(Asai等人。 ,2024)。 044 However, text-based generation with source attri- 045 bution faces several issues: First, citing the source 046 at the document level could impose a heavy cogni- 047 tive burden on users ( Foster , 1979 ; Sweller , 2011 ), 048 where users often struggle to locate the core ev- 049 idence at the section or passage level within the 050 dense and multi-page document. 尽管有051个粒度不匹配可以通过基于052通道引用的生成方法来解决 - 链接 - 053对特定文本块的答案,它需要非054个琐碎的额外工程工作,以匹配文档源中的块055。 此外,源文档中的视觉高-056照明文本块对用户的直观更加直观,但是它仍然具有挑战性,因为它需要控制文档渲染,这是059,它并不总是可以访问,例如PDF方案中。 060受到最新文档屏幕截图EM- 061床上用品检索范式的启发 - 放下文档 - 062 Ment Processing模块,直接使用VLM 063来保留内容完整性和编码Doc-064 UMent ument屏幕截图(Ma等人。 ,2024),065,我们询问源归因是否也可以在066中添加到如此统一的视觉范式中,以es- 067 tablish tablish tablish tablish a Tablish a Tablish a既是视觉,端到端可验证的RAG 068管道,既是用户友好且有效? 069为此,我们提出了通过VI Sual s usce a ttribution(Visa)的检索增加的070代。。此类源归因042方法使用户可以检查输出的043可靠性(Asai等人。,2024)。044 However, text-based generation with source attri- 045 bution faces several issues: First, citing the source 046 at the document level could impose a heavy cogni- 047 tive burden on users ( Foster , 1979 ; Sweller , 2011 ), 048 where users often struggle to locate the core ev- 049 idence at the section or passage level within the 050 dense and multi-page document.尽管有051个粒度不匹配可以通过基于052通道引用的生成方法来解决 - 链接 - 053对特定文本块的答案,它需要非054个琐碎的额外工程工作,以匹配文档源中的块055。此外,源文档中的视觉高-056照明文本块对用户的直观更加直观,但是它仍然具有挑战性,因为它需要控制文档渲染,这是059,它并不总是可以访问,例如PDF方案中。060受到最新文档屏幕截图EM- 061床上用品检索范式的启发 - 放下文档 - 062 Ment Processing模块,直接使用VLM 063来保留内容完整性和编码Doc-064 UMent ument屏幕截图(Ma等人。,2024),065,我们询问源归因是否也可以在066中添加到如此统一的视觉范式中,以es- 067 tablish tablish tablish tablish a Tablish a Tablish a既是视觉,端到端可验证的RAG 068管道,既是用户友好且有效?069为此,我们提出了通过VI Sual s usce a ttribution(Visa)的检索增加的070代。071在我们的方法中,大型视觉模型072(VLM)处理单个或多个检索的文档图像,不仅为074产生了对074用户查询的答案,而且还返回了075框架内的相关区域内的相关区域。076如图1所示,此方法通过视觉上指示文档中的确切078位置来启用di-077 rect归因,从而允许用户在080原始上下文中快速检查生成答案的原始上下文中的支持证据。VLMS 081不受文档格式或渲染的限制,082
Asai T,Tena G,Plotnikova J,Willmann MR,Chiu W-L,Gomez-Gomez L,Boller T,Ausubel FM,Sheen J。拟南芥先天免疫中的激酶信号传导级联。自然。2002:415(6875):977–983。 https://doi.org/10.1038/415977a bi G,Zhou Z,Wang W,Li L,Rao S,Wu Y,Zhang X,Menke flh,Chen S,Zhou J-M。 受体样细胞质激酶直接将各种模式识别受体与拟南芥中有丝分裂原激活的蛋白激酶级联反应的激活联系起来。 植物细胞。 2018:30(7):1543–1561。 https://doi.org/10.1105/tpc.17.00981 Frye CA,Tang D,Innes RW。 通过保守的MAPKK激酶对植物中防御反应的负调节。 Proc Natl Acad Sci U S A. 2001:98(1):373–378。 https://doi.org/10.1073/pnas.98.1.373 Gao C,Sun P,Wang W,Tang d。 拟南芥E3连接酶桶与MKK4和MKK5的相关性,以调节植物免疫。 J Integn Plant Biol。 2021:63(2):327–339。 https://doi.org/10.1111/jipb。 13007 Tang D,Innes RW。 EDR1基因的激酶缺陷形式的过表达增强了拟南芥中的白粉病抗霉菌和乙烯诱导的衰老。 植物J. 2002:32(6):975–983。 https://doi.org/10.1046/j.1365-313x.2002.01482.x Wang W,Chen S,Zhong G,Gao C,Gao C,Zhang Q,Tang d。 有丝分裂原激活的蛋白激酶3通过磷酸化MAPKKK5增强了EDR1突变体的抗病。 植物生理学。 2024:194(1):578–591。 https://doi.org/10.1093/plphys/kiad472 Yan H,Zhao Y,Shi H,Li J,Wang Y,Tang d。2002:415(6875):977–983。https://doi.org/10.1038/415977a bi G,Zhou Z,Wang W,Li L,Rao S,Wu Y,Zhang X,Menke flh,Chen S,Zhou J-M。受体样细胞质激酶直接将各种模式识别受体与拟南芥中有丝分裂原激活的蛋白激酶级联反应的激活联系起来。植物细胞。2018:30(7):1543–1561。https://doi.org/10.1105/tpc.17.00981 Frye CA,Tang D,Innes RW。 通过保守的MAPKK激酶对植物中防御反应的负调节。 Proc Natl Acad Sci U S A. 2001:98(1):373–378。 https://doi.org/10.1073/pnas.98.1.373 Gao C,Sun P,Wang W,Tang d。 拟南芥E3连接酶桶与MKK4和MKK5的相关性,以调节植物免疫。 J Integn Plant Biol。 2021:63(2):327–339。 https://doi.org/10.1111/jipb。 13007 Tang D,Innes RW。 EDR1基因的激酶缺陷形式的过表达增强了拟南芥中的白粉病抗霉菌和乙烯诱导的衰老。 植物J. 2002:32(6):975–983。 https://doi.org/10.1046/j.1365-313x.2002.01482.x Wang W,Chen S,Zhong G,Gao C,Gao C,Zhang Q,Tang d。 有丝分裂原激活的蛋白激酶3通过磷酸化MAPKKK5增强了EDR1突变体的抗病。 植物生理学。 2024:194(1):578–591。 https://doi.org/10.1093/plphys/kiad472 Yan H,Zhao Y,Shi H,Li J,Wang Y,Tang d。https://doi.org/10.1105/tpc.17.00981 Frye CA,Tang D,Innes RW。通过保守的MAPKK激酶对植物中防御反应的负调节。Proc Natl Acad Sci U S A.2001:98(1):373–378。 https://doi.org/10.1073/pnas.98.1.373 Gao C,Sun P,Wang W,Tang d。 拟南芥E3连接酶桶与MKK4和MKK5的相关性,以调节植物免疫。 J Integn Plant Biol。 2021:63(2):327–339。 https://doi.org/10.1111/jipb。 13007 Tang D,Innes RW。 EDR1基因的激酶缺陷形式的过表达增强了拟南芥中的白粉病抗霉菌和乙烯诱导的衰老。 植物J. 2002:32(6):975–983。 https://doi.org/10.1046/j.1365-313x.2002.01482.x Wang W,Chen S,Zhong G,Gao C,Gao C,Zhang Q,Tang d。 有丝分裂原激活的蛋白激酶3通过磷酸化MAPKKK5增强了EDR1突变体的抗病。 植物生理学。 2024:194(1):578–591。 https://doi.org/10.1093/plphys/kiad472 Yan H,Zhao Y,Shi H,Li J,Wang Y,Tang d。2001:98(1):373–378。https://doi.org/10.1073/pnas.98.1.373 Gao C,Sun P,Wang W,Tang d。 拟南芥E3连接酶桶与MKK4和MKK5的相关性,以调节植物免疫。 J Integn Plant Biol。 2021:63(2):327–339。 https://doi.org/10.1111/jipb。 13007 Tang D,Innes RW。 EDR1基因的激酶缺陷形式的过表达增强了拟南芥中的白粉病抗霉菌和乙烯诱导的衰老。 植物J. 2002:32(6):975–983。 https://doi.org/10.1046/j.1365-313x.2002.01482.x Wang W,Chen S,Zhong G,Gao C,Gao C,Zhang Q,Tang d。 有丝分裂原激活的蛋白激酶3通过磷酸化MAPKKK5增强了EDR1突变体的抗病。 植物生理学。 2024:194(1):578–591。 https://doi.org/10.1093/plphys/kiad472 Yan H,Zhao Y,Shi H,Li J,Wang Y,Tang d。https://doi.org/10.1073/pnas.98.1.373 Gao C,Sun P,Wang W,Tang d。拟南芥E3连接酶桶与MKK4和MKK5的相关性,以调节植物免疫。J Integn Plant Biol。2021:63(2):327–339。https://doi.org/10.1111/jipb。 13007 Tang D,Innes RW。 EDR1基因的激酶缺陷形式的过表达增强了拟南芥中的白粉病抗霉菌和乙烯诱导的衰老。 植物J. 2002:32(6):975–983。 https://doi.org/10.1046/j.1365-313x.2002.01482.x Wang W,Chen S,Zhong G,Gao C,Gao C,Zhang Q,Tang d。 有丝分裂原激活的蛋白激酶3通过磷酸化MAPKKK5增强了EDR1突变体的抗病。 植物生理学。 2024:194(1):578–591。 https://doi.org/10.1093/plphys/kiad472 Yan H,Zhao Y,Shi H,Li J,Wang Y,Tang d。https://doi.org/10.1111/jipb。13007 Tang D,Innes RW。EDR1基因的激酶缺陷形式的过表达增强了拟南芥中的白粉病抗霉菌和乙烯诱导的衰老。植物J.2002:32(6):975–983。 https://doi.org/10.1046/j.1365-313x.2002.01482.x Wang W,Chen S,Zhong G,Gao C,Gao C,Zhang Q,Tang d。 有丝分裂原激活的蛋白激酶3通过磷酸化MAPKKK5增强了EDR1突变体的抗病。 植物生理学。 2024:194(1):578–591。 https://doi.org/10.1093/plphys/kiad472 Yan H,Zhao Y,Shi H,Li J,Wang Y,Tang d。2002:32(6):975–983。https://doi.org/10.1046/j.1365-313x.2002.01482.x Wang W,Chen S,Zhong G,Gao C,Gao C,Zhang Q,Tang d。有丝分裂原激活的蛋白激酶3通过磷酸化MAPKKK5增强了EDR1突变体的抗病。植物生理学。2024:194(1):578–591。https://doi.org/10.1093/plphys/kiad472 Yan H,Zhao Y,Shi H,Li J,Wang Y,Tang d。铜制固醇信号激酶1磷酸化mapkkk5以调节拟南芥的免疫力。植物生理学。2018:176(4):2991–3002。 https://doi.org/10.1104/pp.17.01757 Zhao C,Nie H,Shen Q,Zhang S,Lukowitz W,Tang d。 EDR1与MKK4/MKK5物理相互作用,并负调节MAP激酶级联反应以调节植物先天免疫。 PLOS基因。 2014:10(5):E1004389。 https://doi.org/10.1371/journal.pgen.10043892018:176(4):2991–3002。https://doi.org/10.1104/pp.17.01757 Zhao C,Nie H,Shen Q,Zhang S,Lukowitz W,Tang d。EDR1与MKK4/MKK5物理相互作用,并负调节MAP激酶级联反应以调节植物先天免疫。PLOS基因。2014:10(5):E1004389。 https://doi.org/10.1371/journal.pgen.10043892014:10(5):E1004389。https://doi.org/10.1371/journal.pgen.1004389
5 TS Böscke、J Müller、D Bräuhaus、U Schröder 和 U Böttger,《应用物理快报》99 (10), 102903 (2011)。 6 Uwe Schroeder、S Mueller、Johannes Mueller、Ekatarina Yurchuk、D Martin、Christoph Adelmann、Till Schloesser、Ralf van Bentum 和 Thomas Mikolajick,ECS 固体科学与技术杂志 2 (4),N69 (2013)。 7 H Alex Hsain、Younghwan Lee、Gregory Parsons 和 Jacob L Jones,《应用物理快报》116 (19)、192901 (2020)。 8 Johannes Muller、Tim S Boscke、Uwe Schroder、Stefan Mueller、Dennis Brauhaus、Ulrich Bottger、Lothar Frey 和 Thomas Mikolajick,《纳米快报》12 (8),4318 (2012)。9 Yuh-Chen Lin、Felicia McGuire 和 Aaron D Franklin,《真空科学与技术 B 期刊》,《纳米技术和微电子学:材料、加工、测量和现象》36 (1),011204 (2018)。10 Justin C Wong 和 Sayeef Salahuddin,《IEEE 会议纪要》107 (1),49 (2018)。 11 C Zacharaki、P Tsipas、S Chaitoglou、EK Evangelou、CM Istrate、L Pintilie 和 A Dimoulas,《应用物理快报》116 (18), 182904 (2020)。 12 Zoran Krivokapic、U Rana、R Galatage、A Razavieh、A Aziz、J Liu、J Shi、HJ Kim、R Sporer 和 C Serrao,在 2017 年 IEEE 国际电子器件会议 (IEDM) 上发表,2017 年(未发表)。 13 Shen-Yang Lee、Han-Wei Chen、Chiuan-Huei Shen、Po-Yi Kuo、Chun-Chih Chung、Yu-En Huang、Hsin-Yu Chen 和 Tien-Sheng Chao,IEEE 电子器件快报 40 (11), 1708 (2019)。 14 Sujay B Desai、Surabhi R Madhvapathy、Angada B Sachid、Juan Pablo Llinas、Qingxiao Wang、Geun Ho Ahn、Gregory Pitner、Moon J Kim、Jeffrey Bokor 和 Chenming Hu,Science 354 (6308), 99 (2016)。15 Amirhasan Nourbakhsh、Ahmad Zubair、Redwan N Sajjad、Amir Tavakkoli KG、Wei Chen、Shiang Fang、Xi Ling、Jing Kong、Mildred S Dresselhaus 和 Efthimios Kaxiras,Nano letters 16 (12), 7798 (2016)。16 Felicia A McGuire、Zhihui Cheng、Katherine Price 和 Aaron D Franklin,Applied Physics Letters 109 (9), 093101 (2016)。 17 Felicia A McGuire、Yuh-Chen Lin、Katherine Price、G Bruce Rayner、Sourabh Khandelwal、Sayeef Salahuddin 和 Aaron D Franklin,《Nano Letters》17 (8),4801 (2017)。18 Yuh-Chen Lin、Felicia McGuire、Steven Noyce、Nicholas Williams、Zhihui Cheng、Joseph Andrews 和 Aaron D Franklin,《IEEE 电子设备学会杂志》7,645 (2019)。19 Mengwei Si、Chun-Jung Su、Chunsheng Jiang、Nathan J Conrad、Hong Zhou、Kerry D Maize、Gang Qiu、Chien-Ting Wu、Ali Shakouri 和 Muhammad A Alam,《自然纳米技术》13 (1),24 (2018)。 20 Amirhasan Nourbakhsh、Ahmad Zubair、Sameer Joglekar、Mildred Dresselhaus 和 Tomás Palacios,纳米尺度 9 (18), 6122 (2017)。 21 Girish Pahwa、Amit Agarwal 和 Yogesh Singh Chauhan,IEEE Transactions on Electron Devices 65 (11), 5130 (2018)。 22 Daewoong Kwon、Korok Chatterjee、Ava J Tan、Ajay K Yadav、Hong Zhou、Angada B Sachid、Roberto Dos Reis、Chenming Hu 和 Sayeef Salahuddin,IEEE 电子设备快报 39 (2)、300 (2017)。 23 Daewoong Kwon、Suraj Cheema、Nirmaan Shanker、Korok Chatterjee、Yu-Hung Liao、Ava J Tan、Chenming Hu 和 Sayeef Salahuddin,IEEE Electron Device Letters 40(6),993 (2019)。 24 Junichi Hattori、Koichi Fukuda、Tsutomu Ikegami、Hiroyuki Ota、Shinji Migita、Hidehiro Asai 和 Akira Toriumi,《日本应用物理学杂志》57(4S),04FD07 (2018)。