5 加州大学伯克利分校分子与细胞生物学系,加利福尼亚州伯克利,美国。 6 马克斯普朗克分子细胞生物学和遗传学研究所以及马克斯普朗克复杂系统物理研究所,德国德累斯顿。 7 欧洲分子生物学实验室(EMBL),发育生物学部,德国海德堡。 8 加州大学欧文分校发育与细胞生物学系,加利福尼亚州欧文,美国。 9 波士顿大学生物医学工程系和生物设计中心,马萨诸塞州波士顿,美国# 通讯作者:alvaro.sanchez@yale.edu 摘要 定向进化已用于自上而下地设计生物系统数十年。通常,它已应用于生物体水平或以下,通过迭代采样突变景观来引导寻找具有更高功能的遗传变异。在生物体水平之上,少数研究尝试人工选择微生物群落和生态系统,但成功率参差不齐,且通常不高。我们对人工生态系统选择的理论理解仍然有限,特别是对于大型无性生物群落,而且我们对设计有效的方法来指导它们的进化知之甚少。为了解决这个问题,我们开发了一个灵活的建模框架,使我们能够在广泛的生态条件下系统地探究任意一组群落和选定功能上的任意选择策略。通过在相同条件下人工选择数百个计算机模拟微生物元群落,我们检查了迄今为止使用的两种主要育种方法的基本局限性,并规定了显着提高其功效的修改。我们确定了一系列定向进化策略,特别是当结合使用时,它们更适合自上而下地设计大型、多样化和稳定的微生物群落。我们的结果强调,定向进化允许在生态结构功能景观中进行导航,以寻找动态稳定、生态和功能具有弹性的高功能群落。
发现一个全面的遗传学和遗传单元课程,包括减数分裂,主导/隐性特征,Gregor Mendel,Punnett Squares,蛋白质合成,DNA,基因工程等。This unit bundle features daily lesson activities, interactive notebook templates, word walls, task cards, graphics-packed PowerPoints, differentiated vocabulary, aligned notes pages, labs, projects, and asking questions that align with the following Disciplinary Core Ideas: * MS-LS3.A: Inheritance of Traits * MS-LS3.B: Variation of Traits The curriculum also covers systems and system models, scale, proportion, and数量,因果,模式,能量和物质,结构和功能,稳定性和变化。学生将开发和使用模型来描述为什么对基因(突变)的结构变化可能影响蛋白质并导致对生物体有害,有益或中性作用。为了进一步增强学生的理解,本单元捆绑包包括: *无性繁殖导致后代具有相同的遗传信息 *性繁殖导致后代和遗传变异这种全面的课程非常适合教授有关遗传学和遗传性的完整单元。**探索我们的生物学和生命科学的首选**通过我们精选的选择,为您的生物学和生命科学研究发现了最佳产品。这是三个专家推荐的项目:1。** sno-ball sillies Genetics Simulation套件**:使用此交互式套件深入研究遗传学模拟,该互动套件旨在使学生掌握复杂的概念。2。3。** FLINN高级化合物显微镜**:通过提供4倍,10倍和40倍放大功能的高级显微镜提高观察技巧。**解剖学和生理学幻灯片集**:使用这种综合幻灯片设置进行详细探索,获得人体解剖学和生理学的动手经验。**浏览更多产品**获取旨在促进学习和参与的整个生物学和生命科学产品。
疟疾是一种由疟原虫引起的热带疾病,通过受感染的按蚊叮咬传播。蛋白激酶 (PK) 在疟疾病原体的生命周期中起着关键作用,使这些蛋白质成为抗疟药物研发活动的有吸引力的靶标。作为了解寄生虫信号传导功能的努力的一部分,我们报告了对八种疟原虫 PK 的生物信息学流程分析的结果。到目前为止,还没有进行过 P. malariae 和 P. ovale 激酶组组装。我们对预测的激酶进行了分类、整理和注释,以更新迄今为止发表的 P. falciparum、P. vivax、P. yoelii、P. berghei、P. chabaudi 和 P. knowlesi 激酶组,并首次报告了 P. malariae 和 P. ovale 的激酶组。总体而言,在所有疟原虫属激酶组中鉴定出 76 至 97 种 PK。大多数激酶被分配到九个主要激酶组中的七个:AGC、CAMK、CMGC、CK1、STE、TKL、OTHER;以及疟原虫特异性组 FIKK。约 30% 的激酶已深入分类为组、科和亚科级别,只有约 10% 仍未分类。此外,更新和比较间日疟原虫和恶性疟原虫的激酶组可以优先选择激酶作为潜在的药物靶标,可用于探索发现抗疟新药。通过这种综合方法,我们选出了 37 种蛋白激酶作为潜在靶点,并鉴定出对无性疟原虫 (3D7 和 Dd2 菌株) 阶段具有中等体外活性的试验化合物,这些化合物可作为未来寻找有效抗疟药物的起点。2022 年由 Elsevier BV 代表计算和结构生物技术研究网络出版。这是一篇根据 CC BY-NC-ND 许可协议开放获取的文章 ( http://creativecommons.org/licenses/by-nc-nd/4.0/ )。
现有的植物转化方法和超越其极限的扩展对于作物改良仍然至关重要。对于禾本科植物来说,这甚至更加关键,主要是因为体外再生存在缺陷。尽管禾本科植物中存在许多通过农杆菌或基因枪法实现遗传转化的方案,但它们的效率取决于基因型,而且由于这些物种难以进行体外再生,因此效率仍然很低。世界各地的大学和企业中可能有许多用于谷物和其他重要作物的植物转化设施,但对于无融合生殖物种来说情况并非如此,其中许多是 C4 禾本科植物。此外,无融合生殖(通过种子进行无性繁殖)是育种的另一个限制因素。然而,无融合生殖克隆的转化是一种有吸引力的策略,因为转基因会立即固定在高度适应的遗传背景中,能够进行大规模克隆繁殖。除了巴西种植面积约为 1 亿公顷的 Brachiaria brizantha 等一些物种外,无融合生殖在经济作物中几乎不存在。然而,由于有时在野生近缘种中存在这种特性,因此主要目标是将这种特性转移到作物中以固定杂种优势。到目前为止,这是一项艰巨的任务,主要是因为无融合生殖的许多方面尚不清楚。在过去的几年中,已经确定了许多候选基因,并尝试在拟南芥和水稻中对它们进行功能鉴定。然而,真正的无融合生殖物种的功能分析远远落后,主要是由于其基因组的复杂性、性状本身的复杂性以及缺乏有效的遗传转化方案。在本研究中,我们回顾了以无融合生殖禾本科植物为重点的体外培养和遗传转化方法的现状,以及在其他相关物种中应用新工具的前景,目的有两个:为发现无融合生殖所涉及的分子途径铺平道路,并开发新的育种能力,因为这些禾本科植物中的许多都是重要的饲料或生物燃料资源。
疟疾是一种由疟原虫引起的热带疾病,通过受感染的按蚊叮咬传播。蛋白激酶 (PK) 在疟疾病原体的生命周期中起着关键作用,使这些蛋白质成为抗疟药物研发活动的有吸引力的靶标。作为了解寄生虫信号传导功能的努力的一部分,我们报告了对八种疟原虫 PK 的生物信息学流程分析的结果。到目前为止,还没有进行过 P. malariae 和 P. ovale 激酶组组装。我们对预测的激酶进行了分类、整理和注释,以更新迄今为止发表的 P. falciparum、P. vivax、P. yoelii、P. berghei、P. chabaudi 和 P. knowlesi 激酶组,并首次报告了 P. malariae 和 P. ovale 的激酶组。总体而言,在所有疟原虫属激酶组中鉴定出 76 至 97 种 PK。大多数激酶被分配到九个主要激酶组中的七个:AGC、CAMK、CMGC、CK1、STE、TKL、OTHER;以及疟原虫特异性组 FIKK。约 30% 的激酶已深入分类为组、科和亚科级别,只有约 10% 仍未分类。此外,更新和比较间日疟原虫和恶性疟原虫的激酶组可以优先选择激酶作为潜在的药物靶标,可用于探索发现抗疟新药。通过这种综合方法,我们选出了 37 种蛋白激酶作为潜在靶点,并鉴定出对无性疟原虫 (3D7 和 Dd2 菌株) 阶段具有中等体外活性的试验化合物,这些化合物可作为未来寻找有效抗疟药物的起点。2022 作者。由 Elsevier BV 代表计算和结构生物技术研究网络出版。这是一篇根据 CC BY-NC-ND 许可协议开放获取的文章 ( http://creative- commons.org/licenses/by-nc-nd/4.0/ )。
AFHS Adolescent Friendly Health Service ASHR Adolescent Sexual and Reproductive Health AYFS The Adolescent and Youth Friendly Service BCC Behavioural Change Communication CB Children's Board CBO Community Based Organisation CBR Community Based Rehabilitation CDM Civil Disobedience Movement CEDAW Convention on the Elimination of all Forms of Discrimination against Women CEFM Child, Early and Forced marriages CO Country Office (Plan International) CoC Champions of Change CPC Child Protection Committee CPCC Child Protection Community Committees CRC Convention on the Rights of the Child CSE Comprehensive Sexuality Education CSO Civil Society Organisation CSR Corporate Social Responsibility ERP Enterprise Resource Planning FGM Female Genital Mutilation FIBS Finnish Business and Society GBV Gender Based Violence GRPD Convention on the Rights of Persons with Disabilities HVCA Hazard and Vulnerability Capacity Assessments IEC Information, Education and Communication INGO International Non-governmental Organisation LDC Least Developed Country LFTW光(组织)LGTBIQ+社区,代表女同性恋,同性恋,双性恋,变性者,酷儿,双性恋和无性M&E监测和评估MBMF MBMF我的身体。我的未来。您组织的数据和分析MER Monitoring, Evaluation and Research MFA Ministry for Foreign Affairs of Finland MHM Menstrual Hygiene Management MoH Ministry of Health NCAWMC National Commission for Advancement of Women, Mothers and Children NGO Non-governmental Organisations OPD Organization for People with Disabilities PDR The Lao People's Democratic Republic PFHLA Promotion of Family Health Laos Association PSG Participatory School Governance SAP Systems, Applications, and Products in Data加工 - 金融管理计划可持续发展目标SRH性和生殖健康SRHR SRHR性和生殖健康与权利联合国联合国联合国教育,科学和文化组织UWOPA UWOPA UWOPA UGANDA妇女议会协会VSLA村庄储蓄和贷款协会洗水,卫生水,卫生,hygiene y.o.d.a.a.
入学指导(第 1 周) 1 月 14 日,星期二 介绍、教学大纲和讨论主题 1 月 16 日,星期四 辣椒育种计划简介 蔬菜作物的性质(第 2 周) 1 月 21 日,星期二 蔬菜作物的性质和种子来源 1 月 23 日,星期四 植物的无性和有性生殖 1 月 23 日,星期四 活动 1。温室和实地参观。作业 孟德尔遗传学(第 3 周) 1 月 28 日,星期二 孟德尔遗传学的定性性状和复习 1 月 30 日,星期四 孟德尔遗传学的定性性状和复习 1 月 30 日,星期四 活动 2。准备移植托盘和播种 诱变(第 4 周) 2 月 4 日,星期二 作物遗传资源和原产地中心 2 月 6 日,星期四 诱变 2 月 6 日,星期四 活动 3。筛选诱变种群 2 月 6 日,星期四 作业 1研究计划大纲草案 1 数量遗传学(第 5 周) 2 月 11 日,星期二 数量性状简介 2 月 13 日,星期四 方差和方差分析 2 月 13 日,星期四 活动 3。进行遗传杂交 - 演示和活动 数量遗传学(第 6 周) 2 月 18 日,星期二 数量遗传学 - I 2 月 20 日,星期四 数量遗传学 - II 2 月 20 日,星期四 作业 2 截止。修订的研究计划 数量遗传学(第 7 周) 2 月 25 日,星期二 数量遗传学 - III 2 月 27 日,星期四 数量遗传学 - IV 2 月 27 日,星期四 表型数据收集 植物组织培养(第 8 周) 3 月 4 日,星期二 植物组织培养 3 月 6 日,星期四 活动 5. 花药培养 - 实验室实践(第 9 周) 3 月 11 日,星期二 QTL 映射 1 3 月 13 日,星期四 QTL 映射 2、3 月 13 日,星期四 考试 1 3 月 15 日 -22 日 春假 DNA 标记(第 10 周) 3 月 25 日,星期二 活动 5. 基于 DNA 的标记 3 月 27 日,星期四 作业 3. 反思性论文截止时间为下午 5 点。
上衣是脊椎动物的最接近的生物亲属,为塑造动物发育的进化过程提供了一个非凡的窗口(Ferrier,2011; Johnson等,2024; Todorov et al。,2024)。这些海洋无脊椎动物表现出非常多样化的生活方式(底栖,全骨,孤独,群体或殖民地),生命周期(简单或复杂)以及发展(直接,间接,性或无性恋)(Ricci等人,2022年,2022年; Nanglu等,20223)。这种多样性与它们与脊椎动物的遗传相似性相结合,使双线线成为理解发育机制如何促进进化新颖性的宝贵模型(Procaccini等,2011; Popsuj et al。,2024)。调皮基因组学和表达方面的最新进展使得有可能更深入地了解调皮发育的分子基础(Oda and Satou,2025;SáNnchez-Serna等人,2025年)。同时,我们尚不了解punicatie evo-devo中的特定研究问题,例如,剪裁肌类型的演变或脊椎动物毛细胞和剪裁冠状感觉细胞之间的同源性。这项研究对于鉴定物种之间保守的基因至关重要,这些基因与差异的物种之间的基因,为跨皮物种或更广泛的后代人之间形态学差异的遗传基础提供了见解。本研究主题中编写的研究涉及四个主要主题,从而在亚细胞,细胞,器官和生物水平上推动了思想界限。它具有五个原始研究文章,一份简短的研究报告,四个评论和一篇观点文章的混合。简而言之,它们为分子网络,细胞行为和发育过程提供了新的见解,这些过程构成了束缚物的多样化及其在核核发展的背景下的演变。研究主题包括生态和进化前沿中的七个出版物,在细胞和发育生物学领域的前沿中有四个出版物。该研究主题展示了有关一系列调皮物种的原始研究,包括Ciona Robusta,Oikopleura dioica,Botrylloides Leachii和Polyandrocarpa Zorritensis。以及在所有11个出版物中考虑的调皮物种,它们
关键术语BIPOC - 指黑色,土著和有色人种。通常用来指非白人社区成员。流离失所 - 由于住房成本上升,居民不再负担不起留在家里的情况。原因可能包括低收入居民支持和服务的住房选择有限,低收入家庭依靠从附近消失,驱逐,获取,康复或拆除财产。经济集群 - 类似或互补行业的局部集中度。股权影响分析 - 与其他群体相比,对影响特定群体的任何不成比例的(正或负面)的影响以及通过目标行动解决上述差异的检查。影响的例子是机遇,结果和代表。高潜在部门 - 有望为增长和盈利能力提供准备的领域。例子是技术,医疗保健和能源。lgbtqia+ - 一个包容性的术语,涵盖了所有性别和性行为的人。首字母缩写代表女同性恋,同性恋,双性恋,变性者,酷儿,双性恋,无性和其他身份。生活工资工作 - 收入水平,允许个人或家庭负担足够的庇护所,食物和其他必需品。中位工资 - 直接在收入范围中间的收入金额。人口一半的收入低于中位工资,而另一半的收入比中位工资高。社会确定健康 - 影响健康结果的非医学因素。这些是人们出生,成长,生活,学习,娱乐,崇拜和年龄塑造健康的环境中的条件。非医学因素的例子包括物理环境,社会参与模式以及一个人的安全感和福祉。社会公平 - 指社会政策中所有人的公正,公平和正义。考虑了影响不同人群并努力消除他们的系统性不平等。社会经济人群 - 指与个人,特定人群或社区的财富密切相关的经济资源,权力和声望的绝对或相对水平。这是一种由收入,教育和就业状况等因素组成的多维结构。海岸线总体计划(SMP) - KCC标题22指导Kitsap县的海岸线的未来发展,其方式与1971年的《海岸线管理法》一致,该法案由基本州和县法律组成,该法规规范了该县的海岸线。
植物的有性生殖是一个复杂且受到严格调控的过程,可产生新一代的散播体:有性种子。传统上,在创造新作物品种的过程中,有性生殖被用来分离或选择性地组装所需的基因和性状。然而,有性的利用也给植物育种带来了限制,包括种子成本高昂且方法耗时。在植物育种过程中,可以通过依次利用有性和无融合生殖来缓解大多数这些限制。无融合生殖是一种协同机制的结果,该机制利用性机制并以协调胚珠发育步骤的方式发挥作用,从而产生无性(克隆)种子。有性发育的改变涉及减数分裂、配子发生以及胚胎和胚乳形成中广泛表征的功能和解剖变化。无融合生殖植物的胚珠跳过减数分裂,形成未减数的雌配子体,其卵细胞发育成孤雌生殖胚胎,中央细胞可能与精子融合,也可能不融合,形成种子胚乳。因此,功能性无融合生殖至少涉及三个组成部分,即无融合生殖 + 孤雌生殖 + 胚乳发育,这些组成部分是从有性生殖改良而来的,必须在分子水平上进行协调,才能完成发育步骤并形成克隆种子。尽管最近在发现与无融合生殖样表型和克隆种子形成相关的特定基因方面取得了进展,但无融合生殖的分子基础和调控网络仍然未知。这是目前无融合生殖育种局限性的核心问题。本期特刊汇集了 12 篇围绕无融合生殖分子基础的不同主题的出版物,展示了最近在理解该性状的遗传调控方面取得的发现和进展,并讨论了无融合生殖的可能起源及其在植物中商业化应用的其他挑战。由于无融合生殖是一种基于有性生殖功能获得或丧失突变的现象的理论仍未得到解决,Barcaccia 等人 [ 1 ] 重新评估了被子植物无融合生殖的进化起源及其替代发育途径,并提出了系统发育和遗传证据,支持无融合生殖是从有性生殖进化而来的,是由于有性发育中关键参与者的分子破坏而导致的。此外,Schmidt [ 2 ] 概述了高等植物无融合生殖的分子方面,并清楚地解释了无融合生殖发育所涉及的调控复杂性,强调了 DNA 和 RNA 结合蛋白以及非编码 RNA 在通过表观遗传调控机制激活和抑制发育程序中的积极作用。同样,Ortiz 等人 [ 3 ] 在以 Paspalum spp. 为例的研究中总结了有关无融合生殖的大量信息。并详细介绍了该属无融合生殖发育的关键方面和所使用的各种遗传分析,包括基因组位点的分子表征、三个生殖候选基因( ORC3 、 QGJ 和 TGS1 )的功能表征以及进一步基于基因组的研究路线图。从不同的植物物种中获得了有关无融合生殖的进一步分子细节。Mateo de Arias 等人 [ 4 ] 使用遗传和细胞胚胎学分析结合应激处理对五个物种进行了研究,以提供大量证据支持多态性