药物化学,牢固地植根于化学,同时结合了生物学,医学和药物科学的元素,在分子水平的疾病诊断,治疗和预防方面率先创新。化学是理解药物与生物系统之间复杂相互作用的基石,从而指导药物化学家的精确设计和合成,适用于针对特定活动和优化治疗结果的化合物的合成。同时,基于化学原理建立的纳米技术,在高级成像,诊断,治疗平台和药物输送系统中提出了有希望的途径。聚合物进一步强调了化学的必不可少的作用,这是骨科和心血管设备等医学应用的组成部分,并推动了前进的医疗进步。分析化学技术在药物分析和生物标志物鉴定中起着至关重要的作用,为这些努力提供了基本的支持。此外,正如创新的DOTA-TATE化合物所证明的那样,放射性金属离子在核医学的治疗和诊断中起关键作用。这些跨学科进步强调了化学在促进创新和提高现代医疗保健系统中患者护理标准方面的关键作用。关键词:药物化学,纳米医学,聚合物,核医学。i ntroduction版权所有©2024作者:这是根据Creative Commons Attribution 4.0国际许可(CC BY-NC 4.0)分发的开放访问文章,允许在任何非商业用途的媒介中使用,不受限制地使用,分发和再现,以提供原始作者和源头。
摘要维持地球的完整性对于生命,经济繁荣和其他方面的生存至关重要。全球文明不能也不应忽略地球的恶化。可持续发展目标为所有人建立更好,更繁荣的未来的框架。The sustainable development goals (SDGs) were announced by the United Nations (UN) on September 25, 2015, with the aim of “transforming the globe” by 2030.当前和下一个技术发展都可以解决粮食可持续性的各个方面。使用早期检测系统和智能农业是这些解决方案的两个例子。生物技术有可能直接和间接地促进可持续发展目标的成就。实现SDG-2,旨在通过实现食品和营养安全,改善必需营养物质并促进可持续发展的旨在消除饥饿感,例如,农业生物技术可以利用来促进农产品的生产和营养含量。在可比的静脉中,通过保证健康的生活方式并促进各个阶段的每个人,生物技术对于诊断,治疗和应对流行病或新出现的疾病,恢复或改善生态系统,以及与良好的健康和健康有关,这可能至关重要。关键字:可持续发展目标,生物技术,零饥饿,粮食安全,生物工程简介本章概述了保证粮食安全的困难,可以解决这些问题的一些技术和科学解决方案,即加剧粮食不安全感的特定社会文化,生态和本地变量,以及生物技术的可持续发展目标,旨在到2030年到2030年实现“零饥饿”。
Mohammed Ashfaq 4Ad20ee412 Mohammed Ismail 4ad19ee009 Mohammed Syed Yakoob 4ad19ee010
作者:Azizi Shalbaf,Elnaz; Mian,Nabira Ashfaq; Sohaib,Muhammad Numair辅导员:Kirsi-Mari Kallio审查员:Helena Forslund术语:VT21主题:业务流程控制和供应CHANAGAMENT级别:Master's Level Code代码:5FE04E 5FE0
Filippo Giorgi,Erika Coppola,Daniela Jacob,Teichmann,Sabina Abba Omar,Ashtasim,Nicholina Ban,Katharina Bunsed,Rost Blessed,Rost Das,St.John,Jason P. Evans。 Raffaele,Michelle Reboit,Rechid,Thomas Remedy,Thomas Remere,Sawadogo和Jose'Abraham。支持和分析。气象学会,第1 - 52,2021页。URL https://journals.ametsoc.org/gournals。 1/BAMS-21-0119.1.xml。URL https://journals.ametsoc.org/gournals。1/BAMS-21-0119.1.xml。1/BAMS-21-0119.1.xml。
申请编号REGISTERED NAME OF THE APPLICANTS 001 BHAVANASI SATYASANTHI 002 GAURAV ANIL DHANDE 003 MOHD MUZAKKIR ABDUL NAZIM 004 KUNUTHURU SIVAKUMAR 005 DEETI NAVEEN 006 SANDHYANA BOINI 007 ADALA AKHILA 008 PITLA SAIKIRAN 009 NALINI S 010 SUNILA 011 CHOPPARI ASHOK 012 RAMYA N 013 SUSHMA PRIYANKA CHIKULA 014 NAKKA ANJALI 015 BADDIPUDI BUEALA RATHNA KUMARI 016 RAMYA N 017 JAMPALA PRATHYUSHA 018 HITHASHREE DM 019 DHIRAJ 020 NERELLA ADITHYA 021 GUNDA VAISHNAVI 022 HONNAPPA 023 PUSHPANJALI 024 VAISHNAVI GUNDA 025 GAINI VAMSHI 026 VELLANKI KALYANI SREE KANYA 027 MEDUDHULA VEERANJANEYULU. 028 MD ASHFAQ 029 SUSHMA SM 030 NAVYA BYNU 031 RADHIKA SURESH JAKKAPPAGOL 032 TOSHANA YOGESH SAKHARE 033 SOWMYA KIRAN MK 034 SYEDA KARISHMA TABASSUM 035 M. DIVYA 036 BADISA PRATHIMA SAHITHI 037 LANKA SAHITHI 038 SANJANA 039 TADIPATRI SRINIVASA PAVAN 040 SAKKARA MADHU PRASAD GOUD 041 MEDISETTY SIVAKUMAR
WITH EPOXY RESIN COMPOSITES Z. HUSSAIN a , S. TAHIR a,b,* , K. MAHMOOD a , A. ALI a , M. I. ARSHAD a , S. IKRAM a , M. AJAZ UN NABI a , A. ASHFAQ a , U. UR REHMAN a , Y. UDDASSIR a a Government College University Faisalabad, 38000, Pakistan b University Of New South Wales, Australia Silver纳米颗粒具有出色的,电和光学特性,使其非常适合光学,生物医学和抗菌剂应用。当前研究的主要目标是改变表面电阻,以增加其吸收。在这项研究工作中,银纳米颗粒是通过共沉淀法制备的。对于此Agno 3和环氧树脂在250 mL去离子水中混合,搅拌半小时。然后,通过滴下滴下降氨溶液NH 4 OH,以将溶液的pH值保持为(10-11)。过滤溶液后,将滤液在150 0 C的温度下干燥2小时C,将其磨碎后,将其在5小时的时间跨度以1000 0 C放入炉中。通过增加0.5g银中环氧树脂(0.25g,0.5g和0.75g)的浓度来制备三个样品。通过使用XRD在27 0角度使用XRD,峰强度增加320(A.U)。峰强度的增加表明,环氧树脂的沉积和质地是在相同的方向上创建的。由FTIR检查的样品具有0.5 g环氧树脂和0.5g Ag,显示出具有C -H弯曲的796.72 cm -1的尖峰。还出现一个宽峰564.88厘米-1,与甲基匹配。引言纳米技术是分子量表的功能系统的工程。另一个样品在FTIR检查的0.5 g白银中具有0.75g环氧树脂,在875.79cm -1时显示出尖峰,显示C = C键。在1424.36厘米-1、564.88cm -1和464.80cm -1的1424.36cm -1和464.80cm -1获得了三个宽峰。用银样品的紫外可见光谱显示出在381.98 nm处获得𝜆max,显示了分子的强光子吸收。结论是,银中环氧树脂复合材料是增强银纳米颗粒技术应用的一种有前途的方法。(2020年6月6日收到; 2020年8月31日接受)关键词:硝酸银(AGNO 3),NH 4 OH,环氧树脂,pH,X射线衍射(XRD),傅立叶转化Infra-Red Spectroscoppopy(ft-ir),UV-Vis-Visible Spectroscoppy 1。这涵盖了当前的工作和更高级的概念。现代合成化学已经达到了可以将小分子制成几乎任何结构的地步。这些方法今天用于生产各种有用的化学物质,例如药物或商业聚合物。这种能力提出了将这种控制范围扩展到下一个大量水平的问题,寻求将这些单分子组装到由许多分子组成的超分子组件中,这些分子以明确的方式排列的许多分子。