摘要简介:遗传性载脂蛋白 A-I (AApoAI) 淀粉样变性是一种罕见的异质性疾病,发病年龄和器官受累各不相同。很少有系列文章详细介绍了一系列致病性 APOA1 基因突变的实体器官移植的自然史和结果。方法:我们确定了 1986 年至 2019 年期间在国家淀粉样变性中心 (NAC) 就诊的所有 AApoAI 淀粉样变性患者。结果:总共确定了 57 名患有 14 种不同 APOA1 突变的患者,包括 18 名接受肾移植的患者(5 例肝肾联合 (LKT) 移植和 2 例心肾联合 (HKT) 移植)。发病年龄中位数为 43 岁,从发病到转诊的中位数时间为 3(0 – 31 年)。81%、67% 和 28% 的患者检测到淀粉样蛋白累及肾脏、肝脏和心脏。肾淀粉样变性普遍与最常见的变异 (Gly26Arg, n ¼ 28) 有关。在所有变异中,肾淀粉样变性患者在诊断为 AApoAI 淀粉样变性时肌酐中位数为 159 m mol/L,尿蛋白中位数为 0.3 g/24 h,从诊断到终末期肾病的中位时间为 15.0 (95% CI: 10.0 – 20.0) 年。肾移植后,同种异体移植的中位生存期为 22.0 (13.0 – 31.0) 年。移植后有一例患者早期死亡(肾移植后 2 个月感染相关),未发生导致移植失败的早期排斥反应。在所有四例接受连续 123 I-SAP 闪烁显像的病例中,肝移植均导致淀粉样蛋白消退。结论:AApoAI 淀粉样变性是一种进展缓慢、难以诊断的疾病。移植结果令人鼓舞,移植物存活率极高。
研究兴趣 形式化方法与人工智能:安全关键型学习系统 验证:顺序和并发软件的形式化验证、不变式生成 综合:程序代码的自动生成 约束求解:约束逻辑编程、决策程序、自动定理证明 建模:生物系统建模,例如基因调控
我有资格的JEE Mains和Advanced。我精通编程语言,例如Python,C ++,我在项目和研究工作中广泛使用。我对数据科学,AI/ML的应用非常兴趣,尤其是在物联网网络和计算机视觉问题,对抗机器学习和自然语言处理。我目前正在印度技术研究所担任研究实习生,并在上述主题的背景下完成了IIT BHU和Guwahati的研究工作。我对AI/ML改变世界的潜力感到兴奋,并相信我的技能,知识和奉献精神将使我对此做出有意义的贡献。字段。
国际期刊:1. A. Sahu、RS Maurya、LK Singh、T. Laha,分析铣削和烧结参数对 Al 86 Ni 8 Y 6 和 Al 86 Ni 6 Y 4.5 Co 2 La 1.5 非晶带晶相演变和力学性能的影响,https://doi.org/10.1007/s40195-021-01341-y。2. A. Sahu、RS Maurya、S. Dinda、T. Laha,Al 86 Ni 8 Y 6 和 Al 86 Ni 6 Y 4.5 Co 2 La 1.5 放电等离子烧结块体非晶复合材料的相演变相关纳米力学性能,冶金和材料学报 A 51A (2020) 5110-5119。 3. RS Maurya、A. Sahu、T. Laha,通过机械合金化和放电等离子烧结合成的 Al 86 Ni 8 Y 6 非玻璃合金的纳米压痕研究,国际材料研究杂志 111 (2020) 1-8。4. A. Sahu、RS Maurya、T. Laha,通过放电等离子烧结固结的 Al 86 Ni 8 Y 6 和 Al 86 Ni 6 Y 4.5 Co 2 La 1.5 熔纺薄带、研磨薄带颗粒和块体样品的非等温结晶行为,ThermochimicaActa 684 (2020) 1-11。 5. A. Sahu 、RS Maurya、T. Laha,Al 86 Ni 6 Y 4.5 Co 2 La 1.5 机械合金化非晶粉末与熔体快速淬薄带烧结行为的比较研究,先进粉末技术 30 (2019) 691-699。6. A. Sahu 、RS Maurya、T. Laha,烧结温度对机械合金化和放电等离子烧结制备的 Al 86 Ni 6 Y 4.5 Co 2 La 1.5 块体非晶复合材料相演变的影响,自然科学进展:材料国际 29 (2019) 32-40。 7. T. Thomas, C. Zhang, A. Sahu , P. Nautiyal, A. Loganathana, T. Laha, B. Boesl, A. Agarwal, 石墨烯增强对放电等离子烧结制备的 Ti 2 AlC 陶瓷力学性能的影响, 材料科学与工程 A 728 (2018) 45-53。8. A. Loganathan, A. Sahu , C. Rudolf, C. Zhang, S. Rengifo, T. Laha, B. Boesla, A. Agarwal, 冷喷涂 Ti 2 AlC MAX 相涂层的多尺度摩擦学和纳米力学行为, 表面与涂层技术 334 (2018) 384-393。 9. RS Maurya, A. Sahu , T. Laha, 烧结温度对机械合金化 Al 86 Ni 6 Y 6 Co 2 非晶态粉末放电等离子烧结固结过程中相变的影响, 非晶态固体杂志 453 (2016) 1-7。10. RS Maurya, A. Sahu , T. Laha, 机械合金化和连续放电等离子烧结在不同固结压力下合成的铝基块体金属玻璃的微观结构和相分析, 先进材料快报 7 (2016) 187-191。11. RS Maurya, A. Sahu , T. Laha, 通过放电等离子烧结固结机械合金化非晶态粉末合成的 Al 86 Ni 8 Y 6 块体非晶态合金的定量相分析, 材料与设计 93 (2016) 96-103。 12. RS Maurya,A. Sahu,T. Laha,固结压力对机械合金化 Al 86 Ni 8 Y 6 非晶态粉末放电等离子烧结过程中相演变的影响,材料科学与工程 A 649 (2016) 48-56。国际会议:1. A. Sahu,A. Behera,Al-Cu 合金的半固态加工和摩擦学特性,Materials Today:Proceedings 2 (2015) 1175-1182。2. A. Behera、S. Aich、a. Behera、A. Sahu,磁控溅射 Ni/Ti 薄膜的加工和特性及其退火行为以诱导形状记忆效应,Materials today:proceedings 2 (2015) 1183-1192。
逆境是他长大的最伟大的老师,Ashutosh受到对自然的热爱和对所有生物的迷恋的影响。他的父亲,兽医和毒理学家,启发了他欣赏生物体和生命科学的复杂性和奇观。他的母亲是一位食品科学家,研究了增加农作物货架生命的方法,以便农民可以更好地存储农产品。以及与家人的临床医生一起,Ashutosh在诊所度过了一段时间,目睹了他们作为医生对人们的健康和福祉的真正影响。Ashutosh被许多在人们的生活中产生重大差异的人所包围,并累积这些影响使他从事生物医学科学的职业。从印度移居美国后,Ashutosh迅速沉浸在M.D.安德森癌症中心。 Ashutosh有一些新的东西可以学习。 他找到了美国的自由精神,可以采取态度具有传染性和鼓舞人心的态度。 今天,Ashutosh与家人住在华盛顿特区的郊区。安德森癌症中心。Ashutosh有一些新的东西可以学习。他找到了美国的自由精神,可以采取态度具有传染性和鼓舞人心的态度。今天,Ashutosh与家人住在华盛顿特区的郊区。
简介:ISRO于2019年7月22日从印度太空港口Sriharikota推出了Chandrayaan-2 Mission。轨道器高分辨率摄像头(OHRC)板上Chandrayaan-2 Orbiter-Craft,是一款非常高的空间分辨率摄像机,可在可见的Panchronic(PAN)频段中运行。OHRC测量在可见的电磁频谱范围内从月球表面反射的太阳光。该相机设计用于在非常低的太阳高度条件下进行成像。OHRC图像被广泛用于着陆点表征,以检测小规模的特征,尤其是在Lunar表面上的较小巨石。OHRC的地面采样距离(GSD)(在Nadir View中)距离100 km的高度为0.25m和3公里。OHRC具有通过航天器操作产生多视立体声图像的能力。这些立体对可用于生成迄今可用于月球表面的最高分辨率数字高程模型(DEM)。这项研究提供了月球表面几个特定区域的OHRC多视图(Stecreo)图像的DEM生成能力。OHRC摄像机的规格:下表1中提供了OHRC摄像机的规格。