Cuberover是天体可扩展的行星级风车,旨在彻底改变进入月球的通道。Cuberover使用飞行遗产和现成的组件以历史价格的一小部分执行科学任务和技术演示。类似于月球表面的Cubesats,每个Cuberover单元或“ U”,可以支撑10 cm x 10 cm x 10 cm 10 cm的有效载荷,重量为1千克。此标准配置可扩展到从2U到24U的尺寸,并且更大,以支持有效的有效载荷,并有各种需求。借助Cuberover服务,客户提供有效载荷,并且Astrobotic提供了发布,Lander,Rover和Mission操作。
Astrobotic 的着陆器可以将有效载荷送至月球轨道和月球表面。虽然轨道会因任务不同而变化,但 Peregrine 和 Griffin 通常保持在三个不同的月球轨道 (LO) 中,其中两个可用于部署有效载荷。近地点始终为 100 公里,而远地点则通过月球轨道插入 (LOI) 机动从 8700 公里减小到 100 公里的圆形轨道。轨道倾角通常由表面着陆点决定。
可以将 Peregrine 航天器视为太空中的运载工具。就像 DHL 等运输公司将包裹运送到世界各地一样,Astrobotic 可以将物品运送到月球。政府、大学、非营利组织和个人都可以在 Peregrine 上购买房间,并与 Astrobotic 团队合作实现他们的登月目标。在首次任务中,Peregrine 将携带来自七个不同国家、数十个科学团队和数千名个人的各种科学仪器、技术、纪念品和其他有效载荷(或货物)。您可以在 Astrobotic.com 上找到有关 Peregrine 航天器和我们的其他技术的更多信息。
将公共飞船视为太空中的送货车辆。就像DHL这样的运输公司在世界各地发送包裹一样,天文学也会将物品发送到月球。政府,大学,非营利组织和个人都可以在Peregrine上购买房间,并与天体动物团队合作以实现其月球目标。在第一个任务中,Peregrine将携带来自七个不同国家,数十个科学团队以及成千上万个人的各种科学工具,技术,纪念品和其他有效载荷(或货物)。您可以在Astrobotic.com上找到有关Peregrine航天器和其他技术的更多信息。
Goal: Develop a product and a complete toolchain, not just an internal capability Leveraging Public-Private Partnerships via Tipping Point to capture prior NASA tech investments Transfer Mars 2020 LVS + Feature Descriptor IP Implementation to Industry JPL Consulting on software approaches based on Mars 2020 LVS expertise Flying TRN Sensor on Astrobotic Peregrine Mission 1, the Griffin-VIPER mission to南极以及未来的商业任务蛋白石传感器的高可靠性设计适用于月球以外的任务与其他公司合作提供TRN功能向DOD机构和Primes推销以适应国防应用程序内部研发计划,由II阶段II阶段SBIR(GSFC)支持TRN软件,以降低Astrobotic的TRN软件
可以将 Peregrine 航天器视为太空中的运载工具。就像 DHL 等运输公司将包裹运送到世界各地一样,Astrobotic 可以将物品运送到月球。政府、大学、非营利组织和个人都可以在 Peregrine 上购买房间,并与 Astrobotic 团队合作实现他们的登月目标。在首次任务中,Peregrine 将携带来自七个不同国家、数十个科学团队和数千名个人的各种科学仪器、技术、纪念品和其他有效载荷(或货物)。您可以在 Astrobotic.com 上找到有关 Peregrine 航天器和我们的其他技术的更多信息。
4 《关于各国探索和利用外层空间(包括月球与其他天体)活动原则条约》,于 1967 年 10 月 10 日通过,18 UST 2410, 610 UNTS 205(以下简称《外层空间条约》)。 5 Valentina Vecchio,《外层空间条约中的习惯国际法:空间法作为国际公法演进的实验室》,3 G ERMAN J. OF S PACE L AW 66, 501 (2017)。 6 Leonard David,《Luna-25 着陆器重启俄罗斯登月热潮》,《科学美国人》(2020 年 8 月 27 日)。https://www.scientificamerican.com/article/luna-25-lander-renews-russian-moon-rush/ 7 同上。私营实体计划的月球任务包括“Astrobotic Peregrine 着陆器将于 2021 年 6 月发射,Intuitive Machines 将于 2021 年 10 月紧随其后,[Masten Space Systems] 定于 2022 年 12 月发射,Astrobotic 的 VIPER 将于 2023 年发射其更大的 Griffin 着陆器。” Darrell Etherington,SpaceX 将于 2022 年向月球发射 Masten 的第一个着陆器,TEC H C RUNCH (2020 年 8 月 26 日),https://techcrunch.com/2020/08/26/spacex-will- launch-mastens-first-lander-to-the-moon-in-2022/。日本公司 ispace 还计划于 2022 年执行登月任务。Mitsuru Obe,《日本 ispace 旨在成为月球商业活动的“门户”,《新日本航空》(2020 年 8 月 20 日),https://asia.nikkei.com/Business/Aerospace-Defense/Japan-s-ispace-aims-to-be-gateway-for- lunar-business-activity》。
于11月6日加入我们,讨论有关NASA Techleap奖的夜间精确着陆挑战赛以及最近对由天体构造的模拟月球表面进行的获胜技术的飞行测试。挑战试图提高负担能力,并降低精密着陆能力的复杂性,以将航天器运送到安全的着陆地点,尤其是当地形危险且照明条件具有挑战性时。在这次网络研讨会上讨论,由飞行机会人员,天文学以及三个挑战者的主持人主持,将讨论飞行测试,并探索经验教训以及接下来会发生什么。
当Artemis宇航员返回月球时,他们将需要使用电力才能在地面上生活和工作。太阳能将是维持人类生活和科学的选择之一。明年夏天,由NASA Glenn的一组调查员设计的太阳能实验将在天文学的Peregrine Lander上发射到月球上。使用当今轨道卫星和下一代太阳能电池技术的最先进的太阳能电池,PILS(在月球表面上进行的光伏研究)将展示未来任务的光到电力功率转换设备。该实验还将使用一小部分太阳能电池收集有关月球表面电气充电环境的数据。pils包括由改良的砷耐加仑的高效半导体材料和基于地球上使用的技术的硅太阳能电池制成的多峰太阳能电池。细胞将连接到测量仪器
尽管奖金 4,000 万美元的 Google Lunar X-Prize 未能于 2018 年将私人资助的月球车送上月球并行驶 0.5 公里,但仍有几项重大月球任务正在筹划中。尽管如此,两大竞争对手 Moon Express 和 Astrobotic 以及新来者 Blue Origin 仍在积极制定私人月球资产开发计划。更雄心勃勃的是,SpaceX 计划在 2023 年使用猎鹰重型火箭和龙飞船将两名付费游客送上月球。近期还有几项政府资助的月球任务计划。NASA 的努力集中在深空门户上,这是一个绕月轨道运行的空间站,将支持宇航员指挥月球表面的机器人资产。最终,它将扩大到包括一个月球表面基地,最有可能是在月球南极。欧空局的月球村是一个人机月球基础设施,其概念类似于国际南极基地,旨在满足多个政府和私营部门的目标(Crawford,2017)。从纯科学的角度来看,开发支持载人探索计划的基础设施可用于促进无法以其他方式进行的科学研究(Crawford,2001)。月球村基础设施将允许进行复杂的探索活动,从对保存在风化层中的地球埋藏样本进行天体生物学研究到独特的天文观测,尤其是从月球背面进行的射电望远镜观测。然而,科学不会成为月球村的驱动力,而是出于政府的战略和/或商业原因。无论如何,原位资源(ISRU)对于确保月球的可持续性至关重要。俄罗斯和欧洲的 Luna 27 号联合任务旨在展示 ISRU 技术,与最近取消的美国月球资源勘探者任务有许多相似之处