与实验研究的许多其他领域一样,射电天文学与现代技术同时发展,有时会从中借来,有时会推到新的杠杆。这种伙伴关系可以清楚地看到接收者,低温和最先进的电子产品。在过去的20 - 30年中,电子组件价格价格的自由轨道轨迹,尤其是低噪声放大器(LNA),使得建立非常敏感的接收器,以允许在Karl Jansky在1930年代收集到Galaxy的一流数据时,可以对物理可观察到的物理可观察结果进行测量。另一方面,多光束接收器和大面积设施已经在改变当前数据采集率和预期灵敏度的范式,不仅对天体物理学的影响(更多的数据,更多的数据,更多的来源,更深入的红移,在较少观察的时间内),而且在操作的效率上也有效。SKA,Lofar,Alma,Evla和Hauca等是面对新世纪开创性科学挑战的最先进技术。
根据 NASA 发射服务 II (NLS II) 合同的规定,发射服务包括运载火箭 (LV) 和相关标准服务、非标准服务(任务特有选项)、所有工程和分析以及最低性能标准。LSP 还提供发射服务的技术管理、LV 生产/测试的技术洞察、协调和批准特定任务的集成活动、提供任务特有的 LV 硬件/软件开发、提供有效载荷处理设施以及管理发射活动/倒计时。在任务选择后的适当时间,LSP 将根据客户要求通过竞争性方式选择发射服务提供商并授予任务发射服务。发射服务将授予根据技术能力/风险、提议价格的合理性和过去的表现提供最佳发射服务价值以满足政府要求的承包商。因此,除非有唯一来源的坚实技术理由,否则作为 AO 提案的一部分假设特定的运载火箭配置并不能保证将选择提议的 LV 配置。任何此类理由都应在提案中明确说明和解释。所有 NASA 采购的发射服务都将符合 NASA 政策指令 (NPD) 8610.7D,即 NASA 发射服务风险缓解政策。NASA 采购的发射服务将按照 NPD 8610.23C,即运载火箭技术监督政策和 NPD 8610.24C,即发射服务计划 (LSP) 发射前准备情况评估进行管理。这些 NPD 可通过 AO 库访问。
梵蒂冈教皇科学院 (PAS) 定期举办研讨会,讨论科学知识和技术进步的前沿问题,包括这些问题如何影响人类生活。詹姆斯·韦伯太空望远镜 (JWST) 及其结果对理解我们在宇宙中的位置的影响是此类主题的一个极佳当代例子。
5 哈勃太空望远镜系统 5-1 5.1 支持系统模块 5-2 5.1.1 结构和机制子系统 5-2 5.1.2 仪器和通信子系统 5-7 5.1.3 数据管理子系统 5-8 5.1.4 指向控制子系统 5-10 5.1.5 电力子系统 5-14 5.1.6 热控制 5-16 5.1.7 安全(应急)系统 5-16 5.2 光学望远镜组件 5-18 5.2.1 主镜组件和球面像差 5-19 5.2.2 次镜组件 5-23 5.2.3 焦平面结构组件 5-24 5.2.4 OTA 设备部分 5-24 5.3 精细制导传感器 5-25 5.3.1 精细制导传感器组成和功能 5-25 5.3.2 铰接镜系统 5-27 5.4 太阳能电池阵列和抖动问题 5-27 5.4.1 配置 5-27 5.4.2 太阳能电池阵列子系统 5-28 5.4.3 维修任务 3A 的太阳能电池阵列配置 5-29 5.5 科学仪器控制和数据处理单元 5-29 5.5.1 组件 5-29 5.5.2 操作 5-30 5.6 空间支持设备 5-31 5.6.1 飞行支持系统 5-32 5.6.2 轨道替换单元运载器 5-33 5.6.3 机组辅助设备 5-35
本文档为NASA提供的发射服务提供了其他信息。NASA提供的任何商业发射车(LV)将由NASA/发射服务计划(LSP)使用政府合同来采购和管理。在此AO下,建议者不得安排其他访问空间的访问。根据NASA启动服务II(NLS II)合同的规定,发射服务包括发射车辆(LV)和相关的标准服务,非标准服务(任务独特选项),所有工程和分析以及最低绩效标准。LSP还提供发布服务合同管理,发布服务的技术管理,对LV生产/测试的技术洞察力,协调和批准特定于任务的集成活动,提供任务独特的LV硬件/软件开发,提供有效载荷处理的住宿以及管理发射活动/倒计时。在适当的时间,在任务选择之后,LSP将竞争性地选择发射服务提供商,并根据客户要求为任务颁发启动服务任务订单(LSTO)。LSTO被授予承包商,该承包商根据技术能力/风险,提议价格的合理性以及过去的绩效提供了最佳的发射服务价值,以满足政府的要求。因此,作为AO建议的一部分,特定的启动车辆配置的假设将不能保证,除非有唯一的源头有牢固的技术原理,否则将选择拟议的LV配置。应在提案中清楚地确定和解释任何此类理由。所有NASA制造的发射服务均与NASA政策指令(NPD)8610.7,NASA发射服务风险缓解政策一致。NASA收购的发射服务将根据NPD 8610.23,对消耗性发射车的技术监督(ELV)发射服务和NPD 8610.24,发射服务计划(LSP)预启动准备就绪综述。可以通过AO程序库(https://explorers.larc.nasa.gov/apsmex25/smex/smex/programlibrary.html)访问这些NPD。
南非学生有资格获得奖学金,以支付学费和生活费。拥有天文学、天体物理学或物理学本科学位,数学或应用数学至少二年级的南非学生均可申请。NASSP 允许成功且符合条件的荣誉学位学生在获得资金支持的情况下继续攻读硕士学位。
每次评估从新任务概念的开发中吸取的经验教训都表明,需要尽早投资和完善技术,以确保任务成功。根据 J. Mankins 在 2008 年发表的《太空评论》文章,“……在民用太空计划的前 30 年,没有一个项目的成本超支低于 40%,除非在研究和技术方面投资至少占最终实际项目预算的 5-10%。”通过专门的技术管理流程将技术从初始阶段转移到融合阶段,这一重点加快了这些技术向飞行技术组件和仪器的转变。据最近估计,过去十年,天体物理学技术在任务(包括亚轨道有效载荷)中的注入率约为技术补助的 62%。我们致力于通过了解和解决成功注入的关键障碍和挑战来进一步提高这些比率。
这是“天体物理学讲义和论文”系列的第三卷。该系列从 2004 年开始每半年出版一次,旨在为专业界提供西班牙天体物理学研究进展的领先集合,这些集合以西班牙皇家物理学会 (RSEF) 每两年一次的会议上天体物理学研讨会上发表的精选演讲为基础。特别是,本卷包含了受邀评论(讲义)和第三届天体物理学研讨会的选集(论文),该研讨会于 2007 年 9 月在格拉纳达大学科学学院举行的第 31 届 RSEF 科学会议期间举行。本书突出介绍了西班牙天体物理学家对行星学、太阳和恒星物理学、河外天文学、宇宙学和天文仪器的一些重要贡献。在几十年没有专门的任务之后,金星再次受到关注。一方面,Ricardo Hueso 及其同事和 Miguel ´ Angel L´opez-Valverde 回顾了 ESA 金星快车对了解邻近行星大气层的贡献。Carme Jordi 在一篇综合论文中描述了用于确定恒星质量、半径、温度、化学成分和光度的主要观测校准技术和方法。垂死恒星对于理解暗能量的性质至关重要,这可能是当今物理学中最基本的问题。Ia 型超新星在十年前显示宇宙膨胀速度加速方面发挥了根本性作用。Inma Dom´ınguez 及其同事详细介绍了热核超新星爆炸的基本物理知识如何影响它们作为天体物理蜡烛的作用。Isabel M´arquez 和 Eduardo Battaner 分别回顾了星系环境对星系活动的影响以及星系中磁场的特性。加那利大望远镜 (GTC) 的首次亮相是 Francisco S´anchez 的评论主题,他是这项如今已成为现实的事业的倡导者。机器人天文学不是未来,而是全球多台望远镜实现的现实,其中一些在西班牙。Alberto Castro-Tirado 介绍了其中一些仪器及其在探测和跟踪 GRB 中的作用。还有更多。代表 RSEF 天体物理学小组,与前几卷一样,编辑们希望这本书能激发人们对天文学的兴趣,尤其是 2009 年是国际天文学年。编辑们感谢西班牙科学和创新部通过拨款 AYA-2007-28639-E 和 FEDER 基金提供的资金支持。本书是在西班牙皇家物理学会 (RSEF) 的赞助下编辑的。
因子 物理学进展-X 1 Q1 2374-6149 5.0 物理学年鉴 1 Q1 0003-3804 3.276 混沌孤子与分形 1 Q1 0960-0779 3.064 经典引力与量子引力 1 Q1 0264-9381 3.487 当代物理学 1 Q1 0010-7514 5.219 物理与化学参考数据杂志 1 Q1 0047-2689 4.684 自然物理学 1 Q1 1745-2473 20.113 物理学新杂志 1 Q1 1367-2630 3.783物理评论快报 1 Q1 0031-9007 9.227 物理评论 X 1 Q1 2160-3308 12.211 物理报告-物理快报评论部分 1 Q1 0370-1573 28.295 当今物理 1 Q1 0031-9228 3.093 物理-USPEKHI 1 Q1 1063-7869 3.090 物理进展报告 1 Q1 0034-4885 16.62 物理结果 1 Q1 2211-3797 3.042 现代物理评论 1 Q1 0034-6861 38.296 新化学学报 1 Q1 0393-697X 7.565 中国科学-物理力学和天文学 1 Q1 1674-7348 3.986 软物质 1 Q1 1744-683X 3.399 随机和复杂介质中的波 1 Q1 1745-5030 3.223
这是“天体物理学讲义和论文”系列的第三卷,该系列始于 2004 年,每两年出版一次,旨在为专业界提供西班牙天体物理学研究进展的领先集合,这些集合以西班牙皇家物理学会 (RSEF) 每两年一次的会议的天体物理学研讨会期间所作的精选演讲为基础。特别是,本卷包含特邀评论(讲义)和第三届天体物理学研讨会的部分投稿(论文),该研讨会于 2007 年 9 月在格拉纳达大学科学学院举行的第三十一届 RSEF 科学会议期间举行。本书重点介绍了西班牙天体物理学家对行星学、太阳和恒星物理学、河外天文学、宇宙学和天文仪器的一些重要贡献。数十年来,金星一直没有进行过专门的探测任务,如今,它再次受到人们的关注。一方面,Ricardo Hueso 及其合作者,另一方面,Miguel ´ Angel L´opez-Valverde,回顾了欧洲航天局金星快车对了解邻近行星大气层的贡献。Carme Jordi 在一篇综合论文中描述了用于确定恒星质量、半径、温度、化学成分和光度的主要观测校准技术和方法。垂死恒星对于了解暗能量的性质至关重要,这可能是当今物理学中最基本的问题。Ia 型超新星在十年前发挥了重要作用,表明宇宙膨胀速度加快。Inma Dom´ınguez 及其合作者详细介绍了热核超新星爆炸的基本物理知识如何影响它们作为天体物理蜡烛的作用。Isabel M´arquez 和 Eduardo Battaner 分别回顾了星系环境对星系活动的影响以及星系磁场的特性。Francisco S´anchez 回顾了 Gran Telescopio Canarias (GTC) 的首次亮相,他是这项努力的鼓励者,如今它已成为现实。机器人天文学不是未来,而是全球多台望远镜实现的现实,其中一些在西班牙。Alberto Castro-Tirado 描述了其中一些仪器及其在探测和跟踪 GRB 中的作用。还有更多。代表 RSEF 天体物理学小组,与前几卷一样,编辑们希望这本书能够激发人们对天文学的兴趣,尤其是 2009 年是国际天文学年。编辑们感谢西班牙科学和创新部通过 AYA-2007-28639-E 拨款和 FEDER 基金提供的资金支持。本书是在西班牙皇家物理学会 (RSEF) 的赞助下编辑的。