(高级研究ICTAR 2024年2届国际趋势会议,2024年11月22日,2024年)ATIF/参考:Kabaoğlu,M。E.&Uçar,M。H. B.(2024)。使用人工神经网络以IOMT驱动的非侵入性葡萄糖测量。 国际高级自然科学与工程研究杂志,8(10),340-348。 摘要 - 1型糖尿病患者(糖尿病)必须经常监测其血糖水平以控制其病情。 由于传统的血糖测试引起的困难和不适,此过程变得具有挑战性。 为了使此过程更加方便,更少的时间消费,这项研究提出了一种基于医学事物Internet(IOMT)的非侵入性葡萄糖监测系统,该系统提供了一种更具用户友好和无痛的替代方案。 提出的系统使用连接到ESP32微控制器的光传感器从用户的指尖收集光强度数据。 此数据使用FastApi将其通过人工神经网络(ANN)处理到远程服务器。 通过分析光吸收和葡萄糖浓度之间的关系,ANN模型估计了葡萄糖水平,从而消除了对浸润性血液测试的需求。 这种方法为传统方法提供了开创性的替代方案。 初始结果证明了系统的实时葡萄糖监测能力,尽管观察到诸如对外部因素(例如手指压力)的敏感性。使用人工神经网络以IOMT驱动的非侵入性葡萄糖测量。国际高级自然科学与工程研究杂志,8(10),340-348。摘要 - 1型糖尿病患者(糖尿病)必须经常监测其血糖水平以控制其病情。由于传统的血糖测试引起的困难和不适,此过程变得具有挑战性。为了使此过程更加方便,更少的时间消费,这项研究提出了一种基于医学事物Internet(IOMT)的非侵入性葡萄糖监测系统,该系统提供了一种更具用户友好和无痛的替代方案。提出的系统使用连接到ESP32微控制器的光传感器从用户的指尖收集光强度数据。此数据使用FastApi将其通过人工神经网络(ANN)处理到远程服务器。通过分析光吸收和葡萄糖浓度之间的关系,ANN模型估计了葡萄糖水平,从而消除了对浸润性血液测试的需求。这种方法为传统方法提供了开创性的替代方案。初始结果证明了系统的实时葡萄糖监测能力,尽管观察到诸如对外部因素(例如手指压力)的敏感性。这些发现证明了通过实现更连续,舒适和有效的葡萄糖监测来整合物联网技术和机器学习以改善糖尿病护理的潜力。这项研究中提出的系统是开发用于糖尿病管理的可及以患者的工具的一步。
农产品中的细胞内和外部植物病原体都在全球造成巨大的经济损失。基因组编辑技术,尤其是CRISPR/CAS系统,最近已在不同的领域使用,以提高农产品的质量和产量。CRISPR/CAS系统,可为细菌,考古,工资和外国质量剂提供防御,是一种工具,为农业特征的研究和调节提供了独特的机会。在这篇综述中,检查了CRSPR/CAS系统在与引起疾病的植物原生物作斗争中的使用。此外,通过CRISPR/CAS系统,已经揭示了对宿主植物对真菌,细菌和病毒的耐用性和敏感性发挥作用的基因修饰状态。研究表明,CRISPR/CAS系统可有效地提供对植物中植物原子的耐药性。基因组布置领域的进展以及CRISPR/CAS和TRESSGEN -FREE植物将在未来发展新的疾病管理和战斗策略。将来还将能够与CRISPR/CASPR基因组编辑技术同时开发多种致病植物。
由国家和国际专家组成的九名法官的杰出小组监督了比赛。Usman Habib博士(Fast-Nuces Islamabad)领导小组,由Sauban Bin Usman先生(Bolt,Estonia,Estonia)和Raja Hashim Ali博士(德国应用科学)远程加入。 其他受人尊敬的法官包括Syed Fawad Hussain博士(伯明翰大学),Muhammad Hanif博士(GIK研究所),Arshad Islam博士(Fast-Nuces Islamabad),Syed Atif Mehdi博士(教育性),Adeel Adeel Ashraf Cheema先生(Fast-Nuces faisalabad)和Mutlib先生和Mutlib先生,和Ayub a。Usman Habib博士(Fast-Nuces Islamabad)领导小组,由Sauban Bin Usman先生(Bolt,Estonia,Estonia)和Raja Hashim Ali博士(德国应用科学)远程加入。其他受人尊敬的法官包括Syed Fawad Hussain博士(伯明翰大学),Muhammad Hanif博士(GIK研究所),Arshad Islam博士(Fast-Nuces Islamabad),Syed Atif Mehdi博士(教育性),Adeel Adeel Ashraf Cheema先生(Fast-Nuces faisalabad)和Mutlib先生和Mutlib先生,和Ayub a。
开发客观的方法来监测飞行员、无人机操作员和空中交通管制员在训练和飞行活动中的认知状态对于确保飞行安全、优化训练过程以及设计创新的人机交互系统至关重要。机器接口。适合现场使用的便携式、可靠的神经生理学测量方法,例如功能性近红外光谱 (fNIRS) 光学脑成像技术,为满足这些需求提供了一些重要的优势。在这篇综述中,旨在总结 fNIRS 技术的科学基础,并通过介绍飞行员/飞行员等先锋航空应用的例子,总结 fNIRS 方法为航空医学和人体工程学领域提供的机会。操作员认知工作量监测、控制界面评估、G-LoC/缺氧估计等。
针对身体内不同使用部位而设计的支架结构在材料含量和设计方面均有所不同。为了达到此目的,已经出现了各种支架设计。首例心血管支架植入术于 1986 年实施,采用不锈钢支架(Wallstent,Schneider AG)[3]。为了克服这些支架群体在临床应用时遇到的困难,如断裂、腐蚀等机械问题,以及长期再狭窄等血管闭塞问题,采用不同材料制作的支架应运而生[4]。 1987年,第一个获得FDA批准的支架(Palmaz-Schatz,强生公司)问世。 20 世纪 90 年代初期开发的其他支架设计(Flexstent、Cook;Wiktor、Medtronic;Micro、Applied Vascular Engineering;Cordis、Cordis;Multi-link、Advanced Cardiovascular Systems)能够降低弹性恢复和再狭窄问题的风险 [5]。后来,涂层金属支架得到广泛应用,解决了生物相容性金属在腐蚀性体液中出现的腐蚀问题[6]。
开发客观的方法来监测飞行员、无人机操作员和空中交通管制员在训练和飞行活动中的认知状态对于确保飞行安全、优化训练过程以及设计创新的人机交互系统至关重要。机器接口。适合现场使用的便携式、可靠的神经生理学测量方法,例如功能性近红外光谱 (fNIRS) 光学脑成像技术,为满足这些需求提供了一些重要的优势。在这篇综述中,旨在总结 fNIRS 技术的科学基础,并通过介绍飞行员/飞行员等先锋航空应用的例子,总结 fNIRS 方法为航空医学和人体工程学领域提供的机会。操作员认知工作量监测、控制界面评估、G-LoC/缺氧估计等。
[ 10 ] Zhengzhong Liu, Guanxiong Ding, Avinash Bukkittu, Mansi Gupta, Pengzhi Gao, Atif Ahmed, Shikun Zhang, Xin Gao, Swapnil Singhavi, Linwei Li, Wei Wei, Zecong Hu, Haoran Shi, Xiaodan Liang, Teruko Mitamura, Eric P Xing,Zhiting Hu。一个以数据为中心的NLP工作框架,关于自然语言处理的经验方法会议(EMNLP 2020),演示。
在基于脑电图(EEG)的脑机接口(BCI)应用中,从想象相关肢体运动获得的运动想象(MI)信号中提取特征并对其进行分类是一个非常重要的问题。在 MI-EEG 信号的研究中,已经使用了许多不同的特征提取方法和分类算法。然而,随着这些信号中类别数量的增加,分类成功率之间存在显著差异。在提出的方法中,提出了一种包括信号功率谱密度(PSD)信息的特征提取方法。通过对原始 EEG 数据应用经验模态分解 (EMD),可以获得不同频率水平的信号。这些信号的PSD值是使用Welch方法计算的。将得到的PSD值组合成特征向量。使用生成的特征向量,训练了一种流行的深度学习算法——长短期记忆 (LSTM) 网络。对培训后获得的测试成功情况根据个人和渠道进行了详细的比较。比较结果发现,位于头皮中心点的通道比其他通道更成功。