大气中子辐照谱仪(ANIS)是中国散裂中子源(CSNS)的一条新光束线,主要用于现代微电子的加速测试。它具有类似大气的中子谱,具有准直束斑和泛光束斑。ANIS 总长 40 米,配备中子快门、飞行管、中子扩展器、通量控制器、准直器、清除磁铁、中子滤波器以及光束线屏蔽。ANIS 后端设有控制室、操作室和储藏室。设计、组装、检查测试和初始调试测试于 2022 年成功完成。ANIS 目前处于科学调试的高级阶段,用于测量不同配置下的中子谱、通量和剖面。使用裂变电离室 (FIC)、位置灵敏气体电子倍增器 (GEM)、活化箔和单晶金刚石探测器测量了中子束特性。在这项工作中,我们介绍了 ANIS 的测量光束规格和光束评估,这对于即将启动的 ANIS 用户计划很有希望。还介绍了早期操作和用户实验。
•符合或超过适用的环境立法,环境标准和最佳实践。•每天,每日,每季度和每年分析的每日及相关排放量,以便将能源消耗及相关排放量减少2%或更多,以相对于能源消耗和本财政年度年度计划中规定的产生排放。•重视并保留我们财产的自然和文化遗产,从而使我们的客人能够享受真实的本地体验。•在我们的财产中,尤其是水和能源,促进有效利用材料和资源。•努力工作,通过重复,回收和保护自然资源,尤其是通过能源和节水来最大程度地减少我们的废物流。•设定声音环境和社会目标和目标,整合审查过程并定期发布进度报告。•不断确定改善环境管理系统的机会。•促进认识并教育员工有关环境问题和可持续工作实践的教育。•让我们的客人,团队成员,供应商,承包商和当地社区参与我们的计划,以保护环境并在设置环境计划和程序时考虑他们的意见/反馈。•进行环境可取的购买。•参与改善地方和国家一级环境保护的努力。
1。介绍和早期职业本文纪念了Joost Alois Businger 1在他100周年纪念日的科学生涯。如果您要求他的同事和朋友用一句话描述Joost Businger,他们会说他“谦虚”。尽管有谦虚的态度,但许多人还是重新获得了他的作品的意义,其中包括1978年美国气象学会(AMS)半个世纪奖,2003年欧洲地球科学联盟(EGU)Vilhelm Bjerknes奖章,以及他作为AMS荣誉成员的指定。他当选为国家工程学院,是AMS和美国科学发展协会(AAAS)的会员。当恭喜这些荣誉之一时,Joost曾经回答:“我很幸运,在如此年轻的时候,我决定对气象感兴趣,并且与我在一起。它使我年轻”(图1)。Joost于1924年3月29日出生于荷兰的哈勒姆。2他的祖父是瑞士移民,他将瑞士公民授予约斯特。他的父亲Leopold Alois Businger是一位敬业的艺术家(画家),在业余时间从事牙科工作。他的母亲Helena Schimpf Businger是Joost和他的弟弟Peter的歌手和家庭主妇。当Joost大约10岁时,三月份的一个非常温暖的日子激发了他对天气的终生兴趣。第二次世界大战于1940年爆发并对天气的预测被分类时,他保留了战争的最后几年的天气记录,并根据过去的类似序列进行了预测(图2)。他告诉我:“有时候我的预测是正确的,我给邻居留下了深刻的印象。” 3
摘要。必须研究用于陆地环境中高可靠性应用的电子设备,必须研究中子引起的单个事件效应。在本文中,在ISIS-Chipir辐射后,对包装商业SIC Power MOSFET的大气样中性诱导的单事件倦怠(SEB)进行了实验性观察。建立了SEB在MOSFET的电性能中的影响,并通过扫描电子显微镜观察到SIC损坏的区域。基于在模具级别的失败分析,可以定义SEB机制期间的不同阶段。敏感体积,其中二级粒子沉积了足够的能量以触发SEB机制,并位于SIC N-Drift外延层附近附近的SIC N-Drift外延层中。
抽象的气氛温度是气候变化的基本指标,直接影响生态系统,水资源和人类生计。对温度趋势的研究对于理解全球变暖的影响以及制定环境可持续性和气候适应的策略至关重要。这项研究的目的是研究气候变化的综合性空气温度的动力学,以及以Mykolaiv City和Mykolaiv地区为例,影响水资源状况的主要因素之一。研究方法涉及观察,比较和类比,分析,合成和泛化。此外,通过使用回归分析,使用Microsoft EXVOL和数学建模进行了研究。方法涉及构建统计模型以基于一个或多个自变量预测因变量。通过散点图,回归线和置信区间可视化从回归分析中得出的发现,从而可以清楚地解释趋势和模式。在1991 - 2024年期间,Mykolaiv区域的平均年温度升高1.2°C,其增长率是全球速率的三倍。在1998年(40.1°C)中记录了最高温度,2006年(-25.9°C)的最低温度,近年来(2023-2024)已成为整个观察期的温暖EST。因此,数据表明在分析期间,温度高于25°C的天数稳定增加。夏季显示最大的温度:八月的平均最高温度达到+29.6°C,并且每年的炎热天数正在稳步增加。这可能是全球变暖和气候变化的结果。然而,在一些年内,炎热日的数量可能低于趋势值,这表明自然波动以及其他气候因素的可能影响。通常,该图显示出炎热天数增加的明显趋势,这是该地区气候变化的重要指标。
○ESM(MAPP)○现场活动实施(CVP):热带太平洋观察系统(TPOS)赤道太平洋实验(TEPEX)○UXS数据开发/气候应用程序分析○博士后机会:NOAA气候和全球变化竞争的重点
PD-1/PD-L1/PD-L2 免疫检查点在调节免疫反应中起着关键作用,其功能障碍与癌细胞的免疫逃避有关。冷大气等离子体 (CAP) 已成为一种有前途的癌症治疗方式,具有调节免疫检查点的潜力。本研究采用分子动力学 (MD) 模拟来研究 CAP 诱导的氧化对 PD-1 与其配体 PD-L1 和 PD-L2 之间相互作用的影响。我们模拟了不同氧化水平下的 PD-1/PD-L1 和 PD-1/PD-L2 复合物。使用 Vienna PTM 2.0 在线服务器修改配体相互作用位点内的关键残基。伞状采样和其他 MD 分析表明,增加氧化水平会导致 PD-1 与 PD-L1 和 PD-L2 之间的结合亲和力减弱。这些发现表明 CAP 可能为增强抗肿瘤免疫提供一种新策略。这项计算研究为 CAP 影响免疫调节的分子机制提供了宝贵的见解,并强调了其在癌症免疫治疗中的潜力。
ó版权所有2025美国气象学会(AMS)。请允许重复使用此工作的任何部分,请联系permissions@ametsoc.org。在这项工作中使用的任何材料都根据美国第107条确定为“合理使用”的材料版权法(17美国法规§107)或满足美国第108条规定的条件版权法(17USC§108)不需要AMS的许可。重新发布,系统复制,以电子形式发布,例如在网站或可搜索的数据库中或本材料的其他用途,除非受上述声明豁免,要求书面许可或AMS许可。所有AMS期刊和专着出版物均在版权清除中心(https://www.copyright.com)上注册。其他详细信息在AMS版权策略声明中提供,可在AMS网站(https://www.ametsoc.org/pubscopyrightpolicy)上获得。tmospheric and oceanic tshnology(ISSN 0022-3670)的Jernal每月由美国马萨诸塞州波士顿的Beacon Street 45号的美国气象学会每月发布。此和其他AMS标题的订阅率可在https://www.ametsoc.org/index.cfm/ams/publications/subscription-information上在线获得。有关成为AMS成员和/或订阅协会期刊的信息,请访问AMS网站:https://www.ametsoc.org。订阅订单,丢失人数,地址更改和其他业务信函的索赔应发送到amsinfo@ametsoc.org(或美国气象学会,马萨诸塞州波士顿,马萨诸塞州BEACON Street 45号美国气象学会)。在马萨诸塞州波士顿和其他邮件办公室支付的定期邮费。邮政局长:向大气和海洋技术杂志发送地址更改,美国气象学会,马萨诸塞州波士顿的Beacon Street 45号,02108-3693。
用于定向能和自由空间光通信应用的激光束在通过大气传播时可能会因光学湍流而严重扭曲。这些扭曲主要源于大气边界层,该边界层通常延伸至约 2 公里高,包含大气质量的 75%。其影响包括光束偏移、光束增宽和辐照度波动。自适应光学技术的使用可以减轻湍流的影响,此类系统在天文应用中广为人知,但在定向能应用中的实现和性能仍然不太为人所知。任何自适应光学系统的目标都是通过使用波前传感器测量误差、计算适当的校正并将此校正应用于可变形镜来消除光路变化导致的光波前扭曲。为了满足时间带宽要求,该反馈回路每秒执行数百次。要确定自适应光学系统的特性,必须模拟大气湍流对波前的影响。激光系统性能的评估取决于传播预测代码中使用的大气模型的精度。经过几十年的研究,一些分析理论例如几何光学 1 、Rytov方法和马尔可夫近似 2-4 已经发展起来,用于计算激光束传播的特性。但这些方法在某些条件下是近似的,因此它们的适用性有限,并且闪烁统计数据的理论计算非常困难,特别是当强度波动变大时。因此,开发了数值方法来更真实地表示大气湍流对激光束传播的影响。这些方法被称为光束传播方法 5 。这些方法的其他名称是分步傅里叶技术 6 和随机相位屏方法 7,8 。这里我们介绍激光束传播代码 LAtmoSim,它使我们能够评估大气对激光束波前的影响,并通过使用上述方法确定 AO 系统的设计参数。在本文中,我们还介绍了预测大气湍流强度的工作成果。光学湍流强度的定量测量称为折射率结构参数 C n