– 奥地利空间局 (ASA)/奥地利。 – 比利时科学政策办公室 (BELSPO)/比利时。 – 中央机械制造研究院 (TsNIIMash)/俄罗斯联邦。 – 中国卫星发射和跟踪控制总院、北京跟踪和通信技术研究所 (CLTC/BITTT)/中国。 – 中国科学院 (CAS)/中国。 – 中国空间技术研究院 (CAST)/中国。 – 英联邦科学与工业研究组织 (CSIRO)/澳大利亚。 – 丹麦国家空间中心 (DNSC)/丹麦。 – 航空航天科学和技术部 (DCTA)/巴西。 – 电子和电信研究所 (ETRI)/韩国。 – 欧洲气象卫星应用组织 (EUMETSAT)/欧洲。 – 欧洲通信卫星组织 (EUTELSAT)/欧洲。 – 地理信息和空间技术发展局 (GISTDA)/泰国。 – 希腊国家空间委员会 (HNSC)/希腊。 – 希腊空间局 (HSA)/希腊。 – 印度空间研究组织 (ISRO)/印度。 – 空间研究所 (IKI)/俄罗斯联邦。 – 韩国航空宇宙研究院 (KARI)/韩国。 – 通信部 (MOC)/以色列。 – 穆罕默德·本·拉希德航天中心 (MBRSC)/阿拉伯联合酋长国。 – 国家信息和通信技术研究所 (NICT)/日本。 – 国家海洋和大气管理局 (NOAA)/美国。 – 哈萨克斯坦共和国国家空间局 (NSARK)/哈萨克斯坦。 – 国家空间组织 (NSPO)/中国台北。 – 海军空间技术中心 (NCST)/美国。 – 荷兰空间办公室 (NSO)/荷兰。 – 粒子与核物理研究所 (KFKI)/匈牙利。 – 土耳其科学技术研究理事会 (TUBITAK)/土耳其。 – 南非国家空间局 (SANSA)/南非共和国。 – 空间与高层大气研究委员会 (SUPARCO)/巴基斯坦。 – 瑞典空间公司 (SSC)/瑞典。 – 瑞士空间办公室 (SSO)/瑞士。 – 美国地质调查局 (USGS)/美国。
气象局建议,本出版物中包含的信息包括基于科学研究的一般陈述。建议读者,需要意识到在任何特定情况下可能不完整或无法使用此类信息。因此,在不寻求先前的专业专业,科学和技术建议的情况下,必须对该信息做出任何依赖或行动。在法律和气象局允许的范围内(包括其每个员工和顾问),对任何后果的所有责任都排除了所有责任,包括但不限于所有损失,损害,成本,费用和任何其他赔偿,直接或间接地引起,而不是使用此出版物(部分或总而言之)以及所包含的任何信息,以及所包含的任何信息。
该战略计划是建立在大气科学系(DAS)的前5年计划的基础上的。DAS有一系列5年的战略计划,至少可以追溯到1999年。在该部门截然不同的情况下,以前的战略计划(2015-19)是编写的,有9位教职员工(比现在增加50%),并且国家预算的大约是今天的两倍。与以前的计划不同,该战略计划基于2019年4月在学术事务的主持下进行的外部DAS计划审查。该外部审查的报告(2019年5月日期)以及我们对学术事务的正式回应(2019年6月)是公开的(单击链接)。本文包括DAS计划审查的具体建议。目前,在2020年底,DAS的情况与过去几个时期的任何时间
或半个多世纪以上,田野凸轮在推进大气科学方面发挥了核心作用。尽管最近几十年目睹了在美国和国际实验的分类和归档现场数据的有组织的努力,这在很大程度上是通过国家大气研究中心(NCAR)的主持人(NCAR)的主持人,但从1950年代到1980年代的运动中的数据尚未系统地收集并在中央位置进行了存档。在这里,我们报告了采取措施纠正这种情况的努力,最初的重点是大气发声数据。此外,我们通过识别和找到过去现场活动的观察结果并将此信息报告到我们的项目网站上,向国际社会呼吁国际社会在这项努力中sist。
热应激是人为气候变化对人类健康的最大威胁之一(1,2)。极端热量事件的异常时机,严重性和频率引起了人们对他们对健康,生计,生态系统和经济影响的级联影响的担忧,并激发了人们对这种极端热量的原因的持续讨论。尤其是过去二十年来,北半球中部的夏季热量极端 - 包括2003年的欧洲热浪(3、4),2010年的俄罗斯热浪(5、6)和德克萨斯州的热浪和2011年的俄罗斯热浪(7)(7)。重要的是,这些事件中的每一个都受到准谐振行星波扩增或“ QRA”的影响(8-10)。QRA通过准固定行星的共鸣 - 与自由的symoptic -scale -copterparts相互共振,偏向于极端的夏季天气。共振在较高的波数中产生异常高的幅度,因为准固定的行星波的占地波数为6到8,在准静止的自由概要 - 尺度波中有效地被捕获在正常大气条件下通常较弱的响应。最近的工作表明,由于对气候变化的波动动态反应有限,这种现象在当前的生成气候模型中并不好起来(11,12),由于与人为的温室强迫相关的北极扩增而变得越来越普遍(12,13)。鉴于此,已经提出了几种机械主义,并在概念图中可视化(图1)。可以说,最近的极端热量是最深刻,最不可能的是 - 臭名昭著的太平洋西北(PNW)“热穹顶”事件,2021年6月(14)个事件,温度超过116°F(47°C)在波特兰,俄勒冈州,俄勒冈州,以及在塞特尔(Seattle)的少年,距离七月的时间为107°F(42°C)。PNW热异常期间的极端温度非常异常,以至于很难使用应用于观察性记录的常规非固定极值方法,以表征事件的可能性,甚至考虑到气候变化的可能性(14,15)。对气候模型的大型集合的评估表明,从气象站的合奏平均值中的温度异常超过4.5倍(σ)是几乎是不可能的事件(14,16),在没有人类的情况下(我们引起了变暖,而我们表达了与SD的平均值”,而不是SD的平均值,则不应以这种概率的速度分布来解释,这是ca的分布。事件范围的分析发现,气候变化导致该事件至少温暖1至2°C,但是对其真实稀有性的确定估计是难以捉摸的(14、15)。很明显,这种温度异常非常罕见,并提出了一个问题,即是否涉及其他过程,这些过程是否没有通过当前一代模型模拟来正确解决这些属性练习的基础(17)。了解2021 PNW热浪背后的物理驱动因素和机制需要热力学和动力学视角。这种阻止反气旋已经假设,大型尺度动力学的持续性在很大程度上可以实现这种巨型热浪,并因热力学过程而显着加剧(18)。这一事件通常归因于高层高压大气系统(也称为热圆顶)(19),形式为“欧米茄块”。
目的:牙根管的复杂结构有助于细菌在标准根管治疗难以触及的隐蔽区域定植和形成生物膜。本综述旨在总结体外和离体研究的数据,以更好地了解冷常压等离子体 (CAP) 在牙根管消毒中的应用。方法:筛选 PubMed、Scopus 和 Web of Science 数据库。提取纳入研究的特征,并对离体研究进行荟萃分析,以评估 CAP 对粪肠球菌 (E. faecalis) 菌落形成单位测定的影响。该研究遵循 PRISMA 2020 指南进行。结果:共有 31 项研究符合选择标准。只有 2 项研究报告了间接等离子体治疗,28 项试验使用直接 CAP 给药,而 1 项研究同时采用了这两种方法。大多数研究都是针对粪肠球菌进行的,使用氦气或氩气作为载气,或与氧气和空气结合使用。研究发现,不同研究对不同来源、设置和应用方案的处理存在相当大的异质性。尽管如此,CAP 仍显示出减少粪肠球菌菌落形成单位的有效性,标准化平均差异为 4.51,95% CI = 2.55 – 6.48,p 值 < 0.001。结论:数据表明直接使用 CAP 对微生物具有抗菌作用。体外研究表明,效果取决于治疗的时间和距离,而对体外研究进行的荟萃分析表明,CAP 的效果与时间和距离无关。
摘要:在许多情况下,氢气有望在全球能源转型中发挥关键作用,实现净零排放。然而,氢气在生产、储存、分配和使用过程中向大气中的逸散排放可能会降低其对气候的益处,并对空气质量产生影响。在这里,我们使用英国地球系统模型 (UKESM1) 化学-气候模型探索大气成分和大气氢丰度增加对气候的影响。氢气的增加导致甲烷、对流层臭氧和平流层水蒸气的增加,从而产生正辐射强迫。然而,氢气泄漏的一些影响被化石燃料消耗带来的甲烷、一氧化碳、氮氧化物和挥发性有机化合物排放的潜在减少部分抵消。我们从稳态模拟得出的参数中推导出一种确定间接全球变暖潜能值 (GWP) 的改进方法,该方法既适用于寿命较短的物种,也适用于寿命中等和较长的物种,例如氢气。使用这种方法,我们确定了氢气 100 年的全球变暖潜能值为 12 ± 6。基于这一 GWP 和 1% 和 10% 的氢气泄漏率,我们发现氢气泄漏分别抵消了我们全球氢经济情景中二氧化碳总排放量约 0.4% 和 4%。为了最大限度地发挥氢气作为能源的优势,需要将与氢气泄漏相关的排放和臭氧前体气体的排放降至最低。
近年来,能够引导细胞行为和形态的聚合物涂层引起了越来越多的关注。已知涂层特性(包括表面形态、表面结构和化学性质)会显著影响细胞粘附、定向、引导、分化、增殖和基因表达。[1–4] 此类涂层在生物传感器、生物芯片、药物输送装置、假体和植入物中也得到了有效应用。可以使用多种合成和天然来源的生物相容性聚合物。尽管合成聚合物在加工、稳定性和机械性能方面具有优势,但天然聚合物由于其生物活性、生物降解性和生物相容性而在许多应用中更受青睐。 [5– 6 ] 在天然聚合物中,壳聚糖是一种从几丁质中提取的线性多糖,由于其无毒、[7]可生物降解、[8]抗菌活性、[9]生物相容性[10]和免疫活性[11]等显著特性,已广泛应用于生物医学、环境和食品应用。此外,由于壳聚糖的可加工性,它可以设计成各种结构,包括薄膜、[12]膜、[13]微/纳米纤维、[14]绷带、[15]微/纳米颗粒[16]和水凝胶。[17]
安吉拉·瓦萨内利(Angela Vasanelli),《上级师范大学的物理学转移》,PSL大学,CNRS,索邦大学,巴黎大学Livia的Mohammadreza Saemian CNRS,索邦大学,法国法国巴黎大学,法国, yakko.todorov@phys.ens.com(Y。(M. Saemian)。(Ballow的L.)。0003-0334-1815(D。D. Gacemi)。(E。Rodriguez)。Olivier Lopez和BenoitDarquié,激光物理激光器,CNRS, darquié) l.h.li@leeds.ac.uk(L。li),(L. Li)。https://orcid.org/0000-0002-1987-4846(A.G。Davies)。 https://orcid.org/0000-0001-6912-0535(E. Linfield)https://orcid.org/0000-0002-1987-4846(A.G。Davies)。https://orcid.org/0000-0001-6912-0535(E. Linfield)
本报告是作为由美国政府机构赞助的工作的帐户准备的。美国政府或其任何机构,也不是巴特尔纪念研究所,或其任何雇员,对任何信息,设备,产物或程序披露或代表其使用的任何法律责任或责任都没有任何法律责任或责任,或者对其使用的准确性,完整性或有用性都不会侵犯私人权利。以此处参考任何特定的商业产品,流程或服务,商标,制造商或以其他方式不一定构成或暗示其认可,建议或受到美国政府或其任何机构或Battelle Memorial Institute的认可,建议或赞成。本文所表达的作者的观点和观点不一定陈述或反映美国政府或其任何机构的观点和意见。