1 维新大学研究与发展研究所,越南岘港 550000 2 魁北克大学三河市分校(UQTR)化学、生物化学和物理系,魁北克省三河市 G8Z 4M3,加拿大; payman.ghassemi3@gmail.com 3 土伦大学 MAPIEM 实验室(EA 4323),聚合物材料海洋环境界面,CEDEX 9,83041 土伦,法国; pascal.carriere@univ-tln.fr 4 萨斯喀彻温大学化学与生物工程系,萨斯喀彻温省萨斯卡通 S7N 5A2,加拿大; sonil.nanda@usask.ca 5 ENSCR—雷恩化学科学研究所 (ISCR)—UMR CNRS 6226,雷恩大学,35700 雷恩,法国; aymen.assadi@ensc-rennes.fr 6 阮达成大学环境与食品工程学院,300A 阮达成,第 4 区,胡志明市 755414,越南; nguyensyduc@gmail.com 7 京畿大学环境能源工程系,水原 16227,韩国 * 通讯地址:Phuong.nguyen-tri@uqtr.ca;电话:+ 819-376-5011(分机 4505)
探测纳米颗粒重新执行和聚合物纳米复合结构中的聚合物基质之间形成的区域的机械行为,称为“相间”,这是一个主要挑战,因为这些区域很难通过实验方法进行研究。在这里,我们准确地表征了聚合物纳米复合材料的异质机械行为,重点是通过纳米力学模拟和数值均质化技术的组合来关注聚合物/纳米芯的相互作用。最初,使用详细的原子分子动力学模拟研究了用二氧化硅纳米颗粒加固的玻璃状聚(乙烷)聚合物纳米复合材料的全局机械性能,均以1.9%和12.7%的硅胶体积分数。接下来,通过探测在平衡处纳米列列附近的聚合物原子的密度分布曲线来鉴定聚合物/二氧化硅相间的厚度。根据此厚度,将相互间隙细分以检查机械性能的位置依赖性变化。然后,使用连续力学和原子模拟,我们继续计算有效的Young模量和Poisson的聚合物/纳米颗粒间相的比例,作为距纳米颗粒距离的函数。在最后一步中,提出了一个反数值均质化模型,以根据比较标准与MD的数据进行比较标准来预测相间的机械性能。发现结果是可以接受的,这增加了准确有效地预测纳米结构材料中界面特性的可能性。
詹姆斯·克雷(James Clear)的原子习惯已成为努力改善习惯并实现预期结果的个人的转型指南。本文探讨了本书的核心原则,重点是小型行为变化与长期转型之间的相互作用。批判性地研究了习惯形成的概念,身份在个人成长中的作用以及行为改变的四个定律。这项研究还分析了原子习惯如何与心理和行为研究保持一致,从而提供了可持续自我改善的路线图。通过调查其对读者及其在各个领域的应用的影响,该论文将原子习惯作为个人和专业发展的开创性工作。
标题:使用原子探针断层扫描摘要在材料中看到氢:金属材料中的氢存在可能导致灾难性的早期裂缝,称为氢含糖。观察氢及其在微观结构中相关的影响一直是一个巨大的挑战,它限制了解决该问题的解决方案。为此,我们的研究小组开发了一种特殊的工具,即低温原子探针断层扫描(Cryo-Apt),用于氢图,并将其与微力方法结合使用,以研究钢中的氢化含量。我们的努力为破译钢中的氢气诱捕和拥抱机制提供了新的见解,从而促进了钢微结构的发展,钢微结构具有良好的抵抗力。bio:Yi-Sheng(Eason)Chen博士是Nanyang助理教授(NAP)和新加坡国家研究基金会(NRF)材料科学与工程学院,Nanyang Technological University,新加坡(NTU)。他的研究重点是材料表征,冶金和氢技术。专门使用高级显微镜技术,例如原子探针断层扫描(APT)和电子显微镜来开发高级金属材料的结构属性处理关系。从这些努力中获得的见解将有助于更深入地了解材料行为,为发展下一代高性能材料的发展铺平道路。他是Sinica学术界物理研究所的前研究助理。 参考:[1] Y.-S. Chen等。他是Sinica学术界物理研究所的前研究助理。参考:[1] Y.-S. Chen等。“金属中的氢诱捕和覆盖 - 综述。”国际氢能杂志(印刷中)(2024年)。https://www.sciendirect.com/science/article/pii/s036031992401332 6
Atomic Invest为包括零售,公司和机构客户在内的各种客户提供投资咨询服务。Atomic Invest提供了包装费计划,该计划在我们的表格ADV的第2A部分中进行了描述。客户必须填写有关其投资目标,目标和风险承受能力的在线问卷。我们的算法根据客户对问卷的回答生成了推荐的投资组合。除非客户覆盖算法的建议,否则我们基于对客户提供的信息的算法分析来管理客户端的投资组合,或者如果客户端以其他方式自定义了投资组合。投资组合通常由股票证券,共同基金,货币市场基金,银行扫荡车辆,固定收益,ETF或其他证券组成,并包括非附属投资产品。
这位29岁的男性患者是唐氏综合症的受害者,在手术后睡眠呼吸暂停状态和中等智力障碍。他被祖母抚养长大。他从小就接受了精神病治疗,但先前的药物尚不清楚。没有多动症的过去历史。由于搅动,睡眠前的兴奋和头撞,他在15岁时被带到我们的门诊诊所。在头三年中,他获得了利培酮1-4毫克/天。由于锥体外症状和代谢副作用,它被转移到3毫克/天的棕榈酮。在随访的年份中,他的头部撞击和侵略性在打开和关闭。在24岁时,他被怀疑具有责备声音的听觉幻觉,并且帕利替酮的剂量增加到6毫克/天。
双原子分子代码 [VV Albert, JP Covey 和 J. Preskill, Robust encoding of a qubit in a molecule, Phys. Rev. X 10, 031050 (2020). ] 旨在将量子信息编码在双原子分子的方向上,从而能够校正小扭矩和角动量变化带来的错误。在这里,我们直接研究原子和分子平台固有的噪声——自发发射、杂散电磁场和拉曼散射——并表明双原子分子代码无法抵御这种噪声。我们推导出足以使代码免受此类噪声影响的简单条件。我们还确定了现有的并开发了新的吸收-发射 (Æ) 代码,这些代码比分子代码更实用,需要更低的平均动量,可以直接抵御任意阶的光子过程,并且适用于更广泛的原子和分子系统。
半导体旋转量子尺将出色的量子性能与使用行业标准的金属氧化物 - 氧化物 - 氧化物 - 氧化物 - 氧化物 - 氧化量(MOS)工艺相结合的量子性能。这也适用于离子植入的供体旋转,这些供体的旋转进一步提供了特殊的连贯性时间和核旋转中的较大希尔伯特空间尺寸。在这里,我们演示并整合了多种策略来制造基于规模的供体量子计算机。,我们使用31 pf 2分子植物将放置确定性三倍,而在检测植入物方面达到99.99%的情况。通过植入较重的原子(例如123 SB和209 BI)来保留类似的结合,这些原子代表用于量子信息处理的高维Qudits,而SB 2分子可以确定性地形成紧密间隔的Qudits。我们使用纳米孔径使用渐进式植入,证明了具有300 nm间距的供体原子的常规阵列的确定性形成。这些方法涵盖了在硅中基于供体的量子计算机构建的技术要求。
量子计算将彻底改变技术,改变从密码学到制药等各个行业。然而,要发挥量子计算的潜力,需要在物理量子比特实现方面取得突破。在众多有前途的系统中,包括超导电路、分子和光阱,还没有一个系统能够展示大规模量子计算所需的可扩展性。半导体中的自旋态是迄今为止发现的最稳定、抗噪声的量子比特之一。此外,半导体中的供体原子基本相同,使其成为可扩展量子设备的有力候选者。这项研究旨在利用锗的原子级精密制造来开发下一代量子设备,锗是一种有望克服当前可扩展性挑战的材料。
我们提出了格子(p Rotein la tent i doffusion),这是一种通过在预先训练的序列序列序列序列的序列序列的压缩潜在空间上学习扩散,用于蛋白质结构域的发电范围和蛋白质结构域的序列。由于在生成模型训练期间仅需要序列训练数据,因此与其他序列结构生成模型相比,我们将可用的训练数据集增加了10 2×至10 4×。此外,这扩大了可控制生成的注释,我们证明了功能和生物体的组成条件,包括2219个基因本体论功能的丰富词汇。样品表现出跨模式的一致性,同时具有条件弗雷切特(Fréchet)的距离(FID)测量的所需特性。格子范式避免了结构数据库的强烈先验和大规模失衡,可以轻松地使用数据和计算来缩放,并可以控制全原子蛋白质结构和序列。