当二维范德华材料被堆叠以构建异质结构时,Moir'E模式从扭曲的界面或单个层的晶格常数中的不匹配出现。放松原子位置是Moir'e模式的直接,通用的后果,对物理特性具有许多影响。moir´e驱动的原子放松可能被天真地认为仅限于界面层,因此与多层异质结构无关。但是,我们提供了两种类型的范德华异质结构的三维性质的重要性的实验证据:首先,在多层石墨烯中以小扭曲角(θ≈0。14°),我们观察到弛豫结构域的传播甚至超过18个石墨烯层。第二,我们展示了如何在BI 2 SE 3上使用多层PDTE 2,Moir´e晶格常数取决于PDTE 2层的数量。以实验发现的启发,我们开发了一种连续方法,以基于Ab Initi拟示的广义堆叠断层能量功能对多层弛豫过程进行建模。利用该方法的连续性属性使我们能够访问大规模的制度并与我们在这两个系统的实验数据达成协议。此外,众所周知,石墨烯的电子结构敏感取决于局部晶格变形。因此,我们研究了多层松弛对扭曲石墨系统状态局部密度的影响。我们确定对系统的可测量含义,通过扫描隧道显微镜在实验上访问。我们的多层松弛方法不限于讨论的系统,可以用来发现界面缺陷对各种层次感兴趣系统的影响。
摘要:原子力显微镜(AFM)是成像分子,大分子复合物和具有纳米分辨率的纳米颗粒的强大技术。但是,AFM图像被所使用的尖端的形状扭曲。如果可以通过扫描特征比尖端更明显的样品来确定尖端形状,并且可以纠正这些扭曲。在这里,我们提出了3D DNA折纸结构,作为尖端重建和图像校正的基准。我们的信托在广泛的条件下是稳定的,并且在不同高度上具有急剧的步骤,从而使可靠的尖端重建能够从几乎十个基金会中重建。DNA折纸很容易与生物学和非生物学样品编码,与多晶样品相比,尖端顶点的精度更高,并显着提高了图像确定的横向尺寸的准确性。我们的信托因此可以为广泛的应用实现准确而精确的AFM成像。关键字:原子力显微镜,AFM,DNA折纸,图像校正,尖端重建
原子层沉积 (ALD) 已迅速成为半导体行业的重要工具,因为它可以在低温下提供高度保形、可精确调节的涂层,厚度控制在亚纳米级。因此,ALD 是一种将电介质集成到先进光电子器件中的强大方法,并且对于实现新兴的非平面电子设备至关重要。[1] 特别是,可以通过 ALD 在结构化表面上保形生长的非晶态氧化铝 (AlO x ) 广泛用于半导体技术的电介质和化学钝化、[2] 跨硅 (Si) 太阳能电池界面的载流子选择性电荷转移、[3] 非平面场效应晶体管中的栅极电介质、[4] 以及扩散屏障和保护涂层。[5] 当用作 Si 场效应钝化的表面涂层时,ALD AlO x 会引入
抽象时间无处不在,并且是我们日常生活不可或缺的一部分。时间间隔的精确度量是人类依赖的各种活动的基础,例如使用卫星导航,电信,航空,国际时间的定义,使用定位,军事申请的次要申请等准确定位等。原子钟提出了精确的时间测量的核心,因此使定位,导航以及我们直接或其他方式依赖的时间和频率相关技术。本文详细概述了时间测量的历史和朝向原子时钟的演变。它广泛涵盖了从实验室时钟到微型商业时钟的各种类型的原子时钟以及关注微波原子时钟(或频率标准)的关键应用。此外,各个国家 /地区在全球范围内运行的卫星导航系统以及用于此类导航系统的时钟类型被简要介绍,重点是Rubidium Atomic频率标准和其他空间时钟。
原子层沉积 (ALD) 是一种薄膜沉积技术,已广泛应用于半导体行业,用于生产微电子和其他设备。ALD 的独特之处在于它通过一次沉积一层原子层来精确均匀地沉积材料层。本文全面概述了 ALD,包括其历史、原理、应用和当前的最新研究成果。随着各行各业对高质量薄膜的需求不断增加,ALD 的前景一片光明,使其成为生产先进设备和系统的有前途的技术。
原子级精确的石墨烯纳米带 (GNR) 因其可大幅改变的电子特性而日益受到关注,这些特性可通过在化学合成过程中控制其宽度和边缘结构来定制。近年来,GNR 特性在电子设备中的开发主要集中在将 GNR 集成到场效应晶体管 (FET) 几何形状中。然而,由于存在单栅极,此类 FET 器件的静电可调性有限。本文报道了将 9 个原子宽的扶手椅型石墨烯纳米带 (9-AGNR) 集成到由超窄手指栅极和两个侧栅极组成的多栅极 FET 几何形状中的设备。高分辨率电子束光刻 (EBL) 用于定义窄至 12 纳米的手指栅极,并将它们与石墨烯电极相结合以接触 GNR。低温传输光谱测量揭示了具有丰富库仑钻石图案的量子点 (QD) 行为,表明 GNR 形成的 QD 既串联又并联。此外,结果表明,附加栅极能够实现纳米结中 QD 的差分调谐,为实现基于 GNR 的多点系统的多栅极控制迈出了第一步。
与其他过渡金属氧化物相比,RuO 2 具有独特且有前途的性能。RuO 2 因其卓越的异相催化 [1] 和电催化 [2] 能力而闻名。它是一种导电性极强的氧化物(≈ 35 µΩ cm),电阻率与钌金属相当。这种材料的化学和热稳定性增加了它的吸引力。此外,钌的稀缺性和高成本要求我们了解 RuO 2 的微观特性。[3] RuO 2 薄膜具有低电阻率、优异的扩散阻挡性能、高温稳定性和耐化学腐蚀性,在大规模集成电路中有着广泛的应用。[4,5] 除了 Ru 之外,RuO 2 还可用作铜沉积的种子层。 [6,7] 它具有比 Pt 更好的蚀刻能力,这意味着 RuO2 可以借助 O2/CF4 放电中的反应离子蚀刻 (RIO) 轻松图案化。[8] 最近还有研究表明,RuO2 可以作为下一代 Ru 基互连中 Ru 扩散的优异阻挡层。[9]
a 奥地利维也纳技术大学微电子研究所 Christian Doppler 高性能 TCAD 实验室,Gußhausstraße 27-29, 1040,维也纳,奥地利 b 奥地利维也纳技术大学微电子研究所,Gußhausstraße 27-29, 1040,维也纳,奥地利 c Silvaco Europe Ltd.,Compass Point, St Ives, Cambridge, PE27 5JL,英国
实现 AS-ALD 的一种常见方法是使用自组装单分子层 (SAM) 作为抑制剂,以优先阻止一种表面材料上的 ALD 而不是另一种。 [7–14] SAM 是一种有机分子,由头部基团(也称为锚定基团)、主链(通过范德华相互作用参与自组装过程)和尾部官能团组成,其中尾部官能团会影响 SAM 形成后的最终表面特性。通过选择仅与特定表面反应的 SAM 分子头部基团,可以实现选择性 SAM 形成。例如,已证实烷硫醇和烷基膦酸可在金属基材上形成 SAM 结构,但不会在 SiO 2 上形成。 [15–21] 通过使用这两种 SAM 分子作为金属表面 ALD 抑制剂,已有多次成功演示在金属/电介质图案的电介质区域上选择性沉积电介质膜(电介质-电介质,或 DoD)和金属膜(金属-电介质,或 MoD)。[7–12,22,23]
○ Meyer, V. 等人。利用捕获离子进行纠缠增强旋转角度估计的实验演示。Phys. Rev. Lett. 86, 5870–5873 ( 2001 )。○ Pedrozo-Peñafiel, E. 等人。光学原子钟跃迁中的纠缠。Nature 588, 414–418 ( 2020 )。