摘要。我们提出了一种脑萎缩模型,这是高维遗传信息的函数和低维的协变量,例如性别,年龄,APOE基因和疾病状态。提出了一个非参数单索引贝叶斯的高维模型,以在未知函数上使用B型序列序列对关系进行建模,并在随机效应的分布之前,在未知的函数和dirichlet过程尺度混合物上进行了焦中的尺度混合物。在没有随机效应的情况下,收缩的后率是针对固定数量的区域和时间点的,随着样本量的增加。我们通过哈密顿蒙特卡洛(HMC)算法实现了有效的计算算法。将提出的贝叶斯方法的性能与线性模型中相应的最小平方估计器进行了比较,并在高维协变量对高维协变量上的Mosseshoe先验,最小绝对收缩和选择算子(Lasso)(LASSO)(LASSO)(LASSO)和平滑剪辑的绝对偏差(SCAD)进行了惩罚。提出的贝叶斯方法适用于在748个个体的多次访问中使用620,901个SNP和其他6个其他协变量对每个人进行多次访问的大脑区域的数据集,以识别与脑萎缩相关的因素。
结果:基于建议的 AD 评分,我们能够区分 ADNI-1 和 OASIS-1 中的患者和健康对照者,准确率分别为 89%(AUC = 95%)和 87%(AUC = 93%)。此外,我们发现,在校正诊断、年龄、性别、年龄·性别和颅内总容量(Cohen'sf 2 = 0.13)后,AD 评分与 OASIS-1 样本中简易精神状态检查评估的认知功能显着相关。进一步的分析表明,基于 AD 评分和 MMSE 评分对 AD 状态的预测准确率明显高于仅使用其中一种评分。在 SHIP-Trend 中,我们发现 AD 分数与言语记忆测试(包括即时和延迟单词列表回忆)之间存在微弱但显著的关联(再次在校正年龄、性别、年龄·性别和颅内总容量后,Cohen'sf2 = 0.009)。这种关联主要由即时回忆表现驱动。
图 1. 开发腺嘌呤碱基编辑来纠正 SMN2 外显子 7 C6T。a、未受影响个体和脊髓性肌萎缩症 (SMA) 患者的 SMN1 和 SMN2 示意图。SMN1 中的突变会导致 SMA,因为 SMN 蛋白会消耗,而这可以通过编辑 SMN2 来恢复。b、与 SMN1 相比,SMN2 外显子 7 C 到 T (C6T) 多态性的示意图,其中有碱基编辑器 gRNA 靶位及其估计的编辑窗口。cd、当使用由腺嘌呤脱氨酶结构域 ABEmax 33,38、ABE8.20m 35 和 ABE8e 36 与野生型 SpCas9(面板 c)或 SpRY 37(面板 d)融合的 ABE 时,对 SMN2 C6T 靶向腺嘌呤和其他旁观者碱基进行 A-to-G 编辑,通过靶向测序进行评估。 e,使用 SpRY 或其他宽松 SpCas9 PAM 变体 43 对 SMN2 外显子 7 中的腺嘌呤进行 A 到 G 编辑,通过靶向测序进行评估。图 ce 中的数据来自 HEK 293T 细胞中的实验;n = 3 个独立生物学重复的平均值、sem 和单个数据点。
多系统萎缩是一种成人发作,零星和进行性神经退行性疾病。患有这种疾病的人报告了广泛的运动和非运动症状。在多个系统萎缩与其他运动障碍(例如帕金森氏病和进行性疾病的临床萎缩)临床表现中重叠是准确及时诊断的关注点。在过去的5年中,在理解多种系统萎缩的关键病理生理事件方面取得了进展,包括α-核蛋白夹杂物的播种以及检测疾病特异性α-突触核蛋白菌株的检测。在2022年修订了诊断标准,目的是提高诊断多发性系统萎缩的准确性,尤其是在早期疾病阶段。临床试验中疗效的早期信号表明,疾病修饰疗法的多种系统萎缩的可能性,尽管尚无试验在这种罕见疾病中提供明确的神经保护证据。病理生理学的进步可以在生物标志物发现中起作用,以进行早期诊断以及改善疾病的疗法的发展。
摘要:脊髓性肌萎缩症 (SMA) 是一种罕见的遗传性神经退行性疾病,由存活运动神经元 (SMN) 蛋白生成不足引起。SMN 蛋白水平降低会导致运动神经元丢失,从而引起肌肉萎缩和虚弱,损害日常功能并降低生活质量。SMN 上调剂可改善 SMA 患者的临床状况并提高其存活率,但仍存在大量未满足的需求。肌生长抑制素是一种与激活素 II 受体结合的 TGF-β 超家族信号分子,可负向调节肌肉生长;肌生长抑制素抑制是一种有前途的增强肌肉的治疗策略。将肌生长抑制素抑制与 SMN 上调相结合是一种针对整个运动单元的综合治疗策略,为 SMA 带来了希望。Taldefgrobep alfa 是一种新型的全人源重组蛋白,可选择性地与肌生长抑制素结合并竞争性地抑制通过激活素 II 受体发出信号的其他配体。鉴于 taldefgrobep 在神经肌肉疾病患者中具有可靠的科学和临床依据以及良好的安全性,RESILIENT 3 期随机安慰剂对照试验正在研究 taldefgrobep 作为 SMA 中 SMN 上调剂的辅助剂 (NCT05337553)。本文回顾了肌生长抑制素在肌肉中的作用,探讨了 taldefgrobep 的临床前和临床开发,并介绍了 taldefgrobep 在 SMA 中的 3 期 RESILIENT 试验。
据报道,当他们发展神经病理学时,并非所有患有OS的人都会出现痴呆症。大约有30%的人到40岁[2、5、7、18、19、21、27-35]。具有OS的个体为研究这种神经病理学的演变及其与临床痴呆的关系提供了异常的机会,如果可以确定神经病理学的准确度量。在没有精神智障的个体中,已经尝试以这种方式使用脑CT措施[36-52]。Lemay等。[52]表明,介质的时间CT测量(尤其是上壳蓄水池)最能区分对照的AD受试者。即使在疾病的早期,海马和杏仁核等介体时间结构也会受到AD神经病理学的普遍影响[38]。我们假设介体时间CT测量将提供对生活中OS中AD神经病理学的敏感度量。急剧先前的CT研究检查了OS受试者[53-55];大脑萎缩与衰老和OS痴呆的关系的某些方面仍然需要澄清(例如,先前存在的脑性发育不全的重要性[56])。
过去的国会投资和政策已帮助刺激了SMA的发现。当前的SMA治疗可以放慢或停止与SMA相关的未来变性。如果提早提供,尤其是在症状发作之前,这些治疗方法可以大大改善运动和发育的增长,并减少对密集医疗保健和专业支持的未来需求。过去在SMA中的公共和私人研究还对受益于其他神经系统和神经肌肉疾病的神经系统和疾病机制产生了新的了解。但是,当前的SMA治疗不能治愈疾病或其使人衰弱的症状。在SMA的所有年龄和疾病阶段中,都有明显的未满足需求。私人资助的SMA研究没有跟上研究需求或可行的建议。需要继续对SMA的NIH研究,以满足研究需求并应对影响SMA和其他神经系统疾病患者的持续挑战,包括肌肉无力和疲劳。
1诺曼特,奥斯陆大学临床医学研究所,心理健康与成瘾司,奥斯陆大学医院,奥斯陆,奥斯陆2号,挪威2号,挪威2临床分子生物学研究所,基尔·阿尔布雷希(Kield of Kiel),基尔(Kiel),基尔(Kiel),基尔(Kiel),德国3神经疾病疾病研究单位,NeuroDegenerative疾病研究单位,NEUROLICAT DISORTION,NERUROLICAL DISORTORIC神经遗传学,美国国家卫生研究院,美国国家卫生研究院,美国马里兰州贝塞斯达5号5 BORDEAUX,BORDEAUX,BORDEAUX的MultisyStématisée8 Inserm,UMR1219,波尔多人口健康研究中心,波尔多大学,ISPed,Bordeaux,Bordeaux,法国9 Univ。de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, CNRS, Bordeaux, France 10 Centre de Reference Maladie Rare Atrophie MultiSystématisée, Centre d ' Investigation, Clinique CIC 1436, Services de Pharmacologie Clinique et Neurosciences, NeuroToul COEN Center, Toulouse, France 11 Centre医院 - Universitaire de Toulouse,3,Toulouse,Toulance,Toulance 12神经病学系3号医院,图卢兹大学医院,图卢兹大学医院和INSERM U 1048,心血管和代谢疾病研究所,图卢兹研究所,法国13法国第一医疗部,schleswig-Holstein,Biemany Instergute,Instermany Instergute基尔·基尔(Kiel),基尔(Kiel),基尔(Kiel),德国基尔(Kiel)15遗传流行病学研究所,HelmholtzZentrumMünchen-德国德国环境健康研究中心,德国Neuherberg,德国16遗传流行病学主席,IBE,IBE,IBE,LUDWIG-MAXIMILIAN-MAXIMILIAN-UNIVER INICHIAN-MUNANY INICH NUMINANICH MUNICH MUNICH,LMICHINICH,MUNICHINICH MUNICH,LMICH (心脏病学),路德维希 - 马克西利亚人 - 大学(LMU)慕尼黑,慕尼黑,德国慕尼黑18号神经病学系,德国格里夫斯瓦尔德大学医学系,德国格雷夫斯瓦尔德,199 20社区医学研究所,德国格里夫斯瓦尔德大学医学研究院/KEF,德国格里夫斯瓦尔德大学医学研究所21人类遗传学研究所,德国波恩,波恩大学22分子流行病学研究院
已确定淀粉样β蛋白 (Aβ) 沉积、神经纤维缠结 (tau) 和脑萎缩等病理变化在痴呆症发生前十年就已出现。5 因此,听力障碍可能与导致痴呆症发生的病理变化有关。由于听觉皮层位于颞叶,因此颞叶皮层可能是听力障碍患者脑区中萎缩最严重的区域。感觉剥夺假说认为长期听觉剥夺会将认知资源重新分配到听觉认知上。因此,除了颞叶皮层之外,听力障碍可能与与一般认知过程相关的皮层萎缩有关。已证实神经影像生物标志物可反映整个痴呆症病程中大脑的病理生理过程。 6、7 迄今为止,已有少数研究调查了听力障碍与脑灰质 (GM) 宏观结构大小和白质 (WM) 微观结构完整性之间的关联,但这些研究中很少有脑区和 WM 束被一致报道与听力障碍有关。8 – 14 此外,由于脑脊液 (CSF) 中的 A β 和 tau 蛋白与脑中的 A β 和 tau 病理密切相关,有几项研究探讨了听力障碍与 CSF 蛋白之间的关联,以揭示听力障碍在病理学中的影响。同样,由于样本量的限制,得到了不一致的结果。15、16
a 医学图像计算中心 (CMIC),伦敦大学学院医学物理与生物工程系,90 High Holborn,伦敦,WC1V 6LJ,英国 b 核磁共振研究单位,女王广场 MS 中心,神经炎症系,伦敦大学学院女王广场神经病学研究所,脑科学学院,伦敦,罗素广场,伦敦,WC1B 5EH,英国 c 加泰罗尼亚开放大学电子健康中心,西班牙巴塞罗那 d 多发性硬化症临床护理和研究中心,费德里科二世大学神经科学系,意大利那不勒斯 e 史密斯学院,美国马萨诸塞州北安普敦 f 医学图像计算中心 (CMIC),伦敦大学学院计算机科学系,90 High Holborn,伦敦,WC1V 6LJ,英国 g 生物医学工程与成像科学系,伦敦国王学院,英国 h 放射学与核医学系,自由大学医学中心,荷兰阿姆斯特丹 i 脑 MRI 3T , UKCenter、IRCCS Mondino 基金会,意大利帕维亚 j 意大利帕维亚大学脑与行为科学系