1 ,奥尔登堡大学-26129德国奥尔登堡2纳米德2纳米德和隆德大学物理系 - 伦敦大学22100年,瑞典3号超快动力学系,麦克斯·普朗克多学科科学研究所 - 37077 GOTTINGER -37077 GOTTINGEN -4 4THENTHITY -SOSTUTTIR -NINAN -SOSTINTING- 37077 G¨ottingen, Germany 5 Max Planck Institute for Solid State Research - 70569 Stuttgart, Germany 6 Institut de Physique, Ecole Polytechnique F´ed´erale de Lausanne - 1015 Lausanne, Switzerland 7 Department of Physics & Astronomy and California NanoSystems Institute, University of California, Los Angeles Los Angeles, CA, USA 8 Institute格拉兹技术大学实验物理学-8010格拉兹,奥地利9 John A. Paulson工程与应用科学学院,哈佛大学 - 马萨诸塞州剑桥,美国,美国,奥尔登堡大学-26129德国奥尔登堡2纳米德2纳米德和隆德大学物理系 - 伦敦大学22100年,瑞典3号超快动力学系,麦克斯·普朗克多学科科学研究所 - 37077 GOTTINGER -37077 GOTTINGEN -4 4THENTHITY -SOSTUTTIR -NINAN -SOSTINTING- 37077 G¨ottingen, Germany 5 Max Planck Institute for Solid State Research - 70569 Stuttgart, Germany 6 Institut de Physique, Ecole Polytechnique F´ed´erale de Lausanne - 1015 Lausanne, Switzerland 7 Department of Physics & Astronomy and California NanoSystems Institute, University of California, Los Angeles Los Angeles, CA, USA 8 Institute格拉兹技术大学实验物理学-8010格拉兹,奥地利9 John A. Paulson工程与应用科学学院,哈佛大学 - 马萨诸塞州剑桥,美国,美国,奥尔登堡大学-26129德国奥尔登堡2纳米德2纳米德和隆德大学物理系 - 伦敦大学22100年,瑞典3号超快动力学系,麦克斯·普朗克多学科科学研究所 - 37077 GOTTINGER -37077 GOTTINGEN -4 4THENTHITY -SOSTUTTIR -NINAN -SOSTINTING- 37077 G¨ottingen, Germany 5 Max Planck Institute for Solid State Research - 70569 Stuttgart, Germany 6 Institut de Physique, Ecole Polytechnique F´ed´erale de Lausanne - 1015 Lausanne, Switzerland 7 Department of Physics & Astronomy and California NanoSystems Institute, University of California, Los Angeles Los Angeles, CA, USA 8 Institute格拉兹技术大学实验物理学-8010格拉兹,奥地利9 John A. Paulson工程与应用科学学院,哈佛大学 - 马萨诸塞州剑桥,美国,美国,奥尔登堡大学-26129德国奥尔登堡2纳米德2纳米德和隆德大学物理系 - 伦敦大学22100年,瑞典3号超快动力学系,麦克斯·普朗克多学科科学研究所 - 37077 GOTTINGER -37077 GOTTINGEN -4 4THENTHITY -SOSTUTTIR -NINAN -SOSTINTING- 37077 G¨ottingen, Germany 5 Max Planck Institute for Solid State Research - 70569 Stuttgart, Germany 6 Institut de Physique, Ecole Polytechnique F´ed´erale de Lausanne - 1015 Lausanne, Switzerland 7 Department of Physics & Astronomy and California NanoSystems Institute, University of California, Los Angeles Los Angeles, CA, USA 8 Institute格拉兹技术大学实验物理学-8010格拉兹,奥地利9 John A. Paulson工程与应用科学学院,哈佛大学 - 马萨诸塞州剑桥,美国,美国,奥尔登堡大学-26129德国奥尔登堡2纳米德2纳米德和隆德大学物理系 - 伦敦大学22100年,瑞典3号超快动力学系,麦克斯·普朗克多学科科学研究所 - 37077 GOTTINGER -37077 GOTTINGEN -4 4THENTHITY -SOSTUTTIR -NINAN -SOSTINTING- 37077 G¨ottingen, Germany 5 Max Planck Institute for Solid State Research - 70569 Stuttgart, Germany 6 Institut de Physique, Ecole Polytechnique F´ed´erale de Lausanne - 1015 Lausanne, Switzerland 7 Department of Physics & Astronomy and California NanoSystems Institute, University of California, Los Angeles Los Angeles, CA, USA 8 Institute格拉兹技术大学实验物理学-8010格拉兹,奥地利9 John A. Paulson工程与应用科学学院,哈佛大学 - 马萨诸塞州剑桥,美国,美国
抽象隔离的多MEVγ射线,持续时间,高准直和梁角动量(BAM)可能会在核物理学,天体物理学等中找到许多有趣的应用。在这里,我们提出了一种方案,通过非线性汤姆森散射生成这种γ-射线,该旋转相对论电子板由几个周期扭曲的激光脉冲驱动,与微滴定目标相互作用。我们的模型清楚地确定了激光强度阈值和载体 - 内玻璃相对隔离电子纸的产生的影响。三维数值模拟表明,γ射线发射的持续时间为320次,峰值光彩为9.3×10 24光子S -1 mrad -2 mm -2 mrad -2 mm -2每0.1%带宽在4.3 MEV时。γ-射线梁的大BAM为2.8×10 16ℏ,这是由有效的BAM转移来自旋转电子板的有效BAM转移,随后导致了独特的角度分布。这项工作应促进对大型激光设施中旋转电子片的非线性汤姆森散射的实验研究。
在许多领域学习材料的能力至关重要。随着技术的进步,现在可以详细研究原子化。本文在检查不同的反应时研究了两个因素,包括带宽和选择性。具体来说,它探讨了激光脉冲的持续时间如何影响研究过渡时能量和选择性的宽度。这是使用由Morlet小波建模的FEMTO-和ATTSOND脉冲的模拟完成的。然后将这些脉冲转换为傅立叶,以根据海森伯格的不确定性原理来分析该脉冲中所含能量的宽度。费米的黄金法则和电子结合能的表用于定性评估选择性。结果表明,1 FS脉冲对应于FWHM能量中的约1 eV,而A为脉冲对应于FWHM能量中约1000 eV。选择性在多个跃迁耦合时随着带宽的增加而,但是当特定过渡的耦合是dom-Inant时,会改善。 状态的密度也会影响选择性;较高的密度降低了选择性,而较低的密度可以增强它。,但是当特定过渡的耦合是dom-Inant时,会改善。状态的密度也会影响选择性;较高的密度降低了选择性,而较低的密度可以增强它。
与激光相关的诺贝尔奖因其在开创性研究领域的应用而被授予,就像2023年一样。激光器与13-14个物理奖密切相关,涉及新发现,发明或研究方法。列表很长,包括光纤,光纤镊子,频率梳,FEM化学研究以及与被困颗粒有关的研究。激光器在检测引力波和全息图中也起着至关重要的作用。2023年奖项适合这个有力的系列。Pierre Agostini,Ferenc Krausz和Anne L'Huillier的奖品和作品展示了最先进的激光技术如何使极端非线性光学和授权物的出现以及AttoSecond科学如何触发现已用于医学诊断研究或半科学研究的革命光源的发展。
摘要 强近红外 (NIR) 激光脉冲与宽带隙电介质相互作用会在极紫外 (XUV) 波长范围内产生高次谐波。这些观测为固体中的阿秒计量提供了可能性,精确测量各个谐波相对于 NIR 激光场的发射时间将大有裨益。本文表明,当从氧化镁晶体的输入表面检测到高次谐波时,对 XUV 发射的双色探测显示出明显的同步性,这与块体固体中电子-空穴再碰撞的半经典模型基本一致。另一方面,源自 200 μ m 厚晶体出口表面的谐波双色光谱图发生了很大变化,表明传播过程中激光场畸变的影响。我们对 XUV 能量下亚周期电子和空穴再碰撞的跟踪与阿秒脉冲固态源的开发有关。
1 Icfo-Institut de Ciencies fotoiniques,巴塞罗那科学技术研究所,巴塞罗那(巴塞罗那),西班牙,西班牙2 Departimento de Qu i Qu atimica,Aut Madrid大学,马德里大学,西班牙马德里大学3号,西班牙3号,加利福尼亚州伯克利大学伯克利大学,伯克利大学,美国4材料,美国4材料美国加利福尼亚州伯克利5级研究生和艾里斯·阿德尔斯霍夫(Iris Adlershof)研究所 - 固体和纳米结构,G€€€€€€€€€€€€€€€€€9塔苏巴大学计算科学中心,日本杜斯库巴10号实验物理研究所,格拉兹,格拉斯,奥地利格拉兹11弗里茨·哈伯·哈伯学会,马克斯·普朗克学会,德国柏林,德国12伊克里亚,第12页。lluıs公司23,巴塞罗那,西班牙
1。简介:attosond Electron动力学,Petahertz光电子和量子力学中的“损失时间”的问题370 2。量子力学中的严重问题:量子跳跃,不确定性关系和Pauli定理371 2.1 Bohr的理论,量子跳跃和时间测量的不确定性; 2.2 Pauli的定理3。量子力学中的时间面孔372 3.1内部和外部时间; 3.2作为量子可观察的时间和时间操作员; 3.3延迟时间4。mandelstam±tamm不确定性关系374 5。量子保真度和量子速度限制375 6。能量±时间不确定性,与时间有关的汉密尔顿人375 7。激光驱动的量子动力学376 8。不确定性关系和电子动力学的速度限制376 9。Keldysh参数和光电子的Petahertz极限378 10。mandelstam±Tamm的不确定性关系和量子进化的信息几何度量379 10.1量子演化的几何形状; 10.2量子保真度和渔民信息; 10.3不确定性关系和cram er±rao绑定11。量子速度极限的非量化性质381 12。热力学不确定性限制382 12.1信息指标和热力学不确定性; 12.2膜蛋白温度阈值的热力学极限13。结论383参考383
相干电子位移是处理量子信息的一种传统策略,因为它能够将原子网络中的不同位置互连。处理的效率依赖于对机制的精确控制,而这种机制尚未建立。在这里,我们从理论上展示了一种新方法,即利用阿秒单周期脉冲,在比电子波包动态扭曲更快的时间尺度上驱动电子位移。这些脉冲的特征依赖于向电子传递巨大的动量,导致其沿单向路径位移。通过揭示编码量子叠加态的位移波包的时空性质,说明了这一场景。我们绘制出相关的相位信息,并从原点远距离检索它。此外,我们表明,将一系列这样的脉冲应用于离子链,能够以阿秒为单位控制电子波包在相邻位置之间来回相干运动的方向性。扩展到双电子自旋态证明了这些脉冲的多功能性。我们的研究结果为使用阿秒单周期脉冲对量子态进行高级控制建立了一条有希望的途径,为超快速处理量子信息和成像铺平了道路。
1 Krausz,F。&Ivanov,M。Attosecond Physics。修订版mod。物理。81,163,(2009)。 2 Corkum,P。&Krausz,F。Attosecond Science。 nat。 物理。 3,381-387,(2007)。 3 Nisoli,M。&Sansone,G。Attosecond Science的新边界。 prog。 量子。 电子。 33,17-59,(2009)。 4 Ghimire,S。等。 观察大量晶体中高阶谐波产生。 nat。 物理。 7,138-141,(2011)。 5 Cavalieri,A。L.等。 凝结物质中的光谱法。 自然449,1029-1032,(2007)。 6 Hassan,M。T.等。 光学脉冲并跟踪结合电子的非线性响应。 自然530,66-70,(2016年)。 7您,Y。S。等。 无定形固体中的高谐波产生。 自然通讯8,1-5,(2017)。 8 Paasch-Colberg,T。等。 半导体中电流的亚周期光控制:从多光子到隧道状态。 Optica 3,1358-1361,(2016)。 9 Koya,A。N.等。 超快等离子体学的进步。 应用物理评论10,(2023)。 10 Heide,C。等。 电子相干性和在石墨烯中电子光控制中的相干性。 Nano Letters 21,9403-9409,(2021)。 11 Lucchini,M。等。 通过attosecond Spectroscopicy揭示了局部激子的相互交织的原子和批量性质。 12 Tao,Z。等。81,163,(2009)。2 Corkum,P。&Krausz,F。Attosecond Science。 nat。 物理。 3,381-387,(2007)。 3 Nisoli,M。&Sansone,G。Attosecond Science的新边界。 prog。 量子。 电子。 33,17-59,(2009)。 4 Ghimire,S。等。 观察大量晶体中高阶谐波产生。 nat。 物理。 7,138-141,(2011)。 5 Cavalieri,A。L.等。 凝结物质中的光谱法。 自然449,1029-1032,(2007)。 6 Hassan,M。T.等。 光学脉冲并跟踪结合电子的非线性响应。 自然530,66-70,(2016年)。 7您,Y。S。等。 无定形固体中的高谐波产生。 自然通讯8,1-5,(2017)。 8 Paasch-Colberg,T。等。 半导体中电流的亚周期光控制:从多光子到隧道状态。 Optica 3,1358-1361,(2016)。 9 Koya,A。N.等。 超快等离子体学的进步。 应用物理评论10,(2023)。 10 Heide,C。等。 电子相干性和在石墨烯中电子光控制中的相干性。 Nano Letters 21,9403-9409,(2021)。 11 Lucchini,M。等。 通过attosecond Spectroscopicy揭示了局部激子的相互交织的原子和批量性质。 12 Tao,Z。等。2 Corkum,P。&Krausz,F。Attosecond Science。nat。物理。3,381-387,(2007)。 3 Nisoli,M。&Sansone,G。Attosecond Science的新边界。 prog。 量子。 电子。 33,17-59,(2009)。 4 Ghimire,S。等。 观察大量晶体中高阶谐波产生。 nat。 物理。 7,138-141,(2011)。 5 Cavalieri,A。L.等。 凝结物质中的光谱法。 自然449,1029-1032,(2007)。 6 Hassan,M。T.等。 光学脉冲并跟踪结合电子的非线性响应。 自然530,66-70,(2016年)。 7您,Y。S。等。 无定形固体中的高谐波产生。 自然通讯8,1-5,(2017)。 8 Paasch-Colberg,T。等。 半导体中电流的亚周期光控制:从多光子到隧道状态。 Optica 3,1358-1361,(2016)。 9 Koya,A。N.等。 超快等离子体学的进步。 应用物理评论10,(2023)。 10 Heide,C。等。 电子相干性和在石墨烯中电子光控制中的相干性。 Nano Letters 21,9403-9409,(2021)。 11 Lucchini,M。等。 通过attosecond Spectroscopicy揭示了局部激子的相互交织的原子和批量性质。 12 Tao,Z。等。3,381-387,(2007)。3 Nisoli,M。&Sansone,G。Attosecond Science的新边界。prog。量子。电子。33,17-59,(2009)。4 Ghimire,S。等。观察大量晶体中高阶谐波产生。nat。物理。7,138-141,(2011)。 5 Cavalieri,A。L.等。 凝结物质中的光谱法。 自然449,1029-1032,(2007)。 6 Hassan,M。T.等。 光学脉冲并跟踪结合电子的非线性响应。 自然530,66-70,(2016年)。 7您,Y。S。等。 无定形固体中的高谐波产生。 自然通讯8,1-5,(2017)。 8 Paasch-Colberg,T。等。 半导体中电流的亚周期光控制:从多光子到隧道状态。 Optica 3,1358-1361,(2016)。 9 Koya,A。N.等。 超快等离子体学的进步。 应用物理评论10,(2023)。 10 Heide,C。等。 电子相干性和在石墨烯中电子光控制中的相干性。 Nano Letters 21,9403-9409,(2021)。 11 Lucchini,M。等。 通过attosecond Spectroscopicy揭示了局部激子的相互交织的原子和批量性质。 12 Tao,Z。等。7,138-141,(2011)。5 Cavalieri,A。L.等。凝结物质中的光谱法。自然449,1029-1032,(2007)。6 Hassan,M。T.等。 光学脉冲并跟踪结合电子的非线性响应。 自然530,66-70,(2016年)。 7您,Y。S。等。 无定形固体中的高谐波产生。 自然通讯8,1-5,(2017)。 8 Paasch-Colberg,T。等。 半导体中电流的亚周期光控制:从多光子到隧道状态。 Optica 3,1358-1361,(2016)。 9 Koya,A。N.等。 超快等离子体学的进步。 应用物理评论10,(2023)。 10 Heide,C。等。 电子相干性和在石墨烯中电子光控制中的相干性。 Nano Letters 21,9403-9409,(2021)。 11 Lucchini,M。等。 通过attosecond Spectroscopicy揭示了局部激子的相互交织的原子和批量性质。 12 Tao,Z。等。6 Hassan,M。T.等。光学脉冲并跟踪结合电子的非线性响应。自然530,66-70,(2016年)。7您,Y。S。等。无定形固体中的高谐波产生。自然通讯8,1-5,(2017)。8 Paasch-Colberg,T。等。 半导体中电流的亚周期光控制:从多光子到隧道状态。 Optica 3,1358-1361,(2016)。 9 Koya,A。N.等。 超快等离子体学的进步。 应用物理评论10,(2023)。 10 Heide,C。等。 电子相干性和在石墨烯中电子光控制中的相干性。 Nano Letters 21,9403-9409,(2021)。 11 Lucchini,M。等。 通过attosecond Spectroscopicy揭示了局部激子的相互交织的原子和批量性质。 12 Tao,Z。等。8 Paasch-Colberg,T。等。半导体中电流的亚周期光控制:从多光子到隧道状态。Optica 3,1358-1361,(2016)。9 Koya,A。N.等。 超快等离子体学的进步。 应用物理评论10,(2023)。 10 Heide,C。等。 电子相干性和在石墨烯中电子光控制中的相干性。 Nano Letters 21,9403-9409,(2021)。 11 Lucchini,M。等。 通过attosecond Spectroscopicy揭示了局部激子的相互交织的原子和批量性质。 12 Tao,Z。等。9 Koya,A。N.等。超快等离子体学的进步。应用物理评论10,(2023)。10 Heide,C。等。 电子相干性和在石墨烯中电子光控制中的相干性。 Nano Letters 21,9403-9409,(2021)。 11 Lucchini,M。等。 通过attosecond Spectroscopicy揭示了局部激子的相互交织的原子和批量性质。 12 Tao,Z。等。10 Heide,C。等。电子相干性和在石墨烯中电子光控制中的相干性。Nano Letters 21,9403-9409,(2021)。11 Lucchini,M。等。 通过attosecond Spectroscopicy揭示了局部激子的相互交织的原子和批量性质。 12 Tao,Z。等。11 Lucchini,M。等。通过attosecond Spectroscopicy揭示了局部激子的相互交织的原子和批量性质。12 Tao,Z。等。12 Tao,Z。等。自然通信12,1021,(2021)。直接对固体光发射中ATTSENT最终寿命的时间域观察。科学353,62-67,(2016)。13 Lucchini,M。等。 在多晶钻石中的动态动力学Franz-keldysh效应。 科学353,916-919,(2016)。 14 Baudisch,M。等。 石墨烯中狄拉克费物的超快非线性光学响应。 自然通讯9,1018,(2018)。 15 Hui,D.,Alqattan,H.,Sennary,M.,Golubev,N。&Hassan,M。Attosecond Electron显微镜和衍射。 在印刷中,(2024)。13 Lucchini,M。等。在多晶钻石中的动态动力学Franz-keldysh效应。科学353,916-919,(2016)。14 Baudisch,M。等。石墨烯中狄拉克费物的超快非线性光学响应。自然通讯9,1018,(2018)。15 Hui,D.,Alqattan,H.,Sennary,M.,Golubev,N。&Hassan,M。Attosecond Electron显微镜和衍射。在印刷中,(2024)。