皮肤微生物群的不平衡的特征是相位微生物的病原体数量增加。从皮肤菌群收集开始,这项工作的目的是评估石榴(Punica Granatum L.)果皮提取物(PPE)在恢复皮肤微生物群在葡萄球菌spp上作用的可能作用。PPE,并分析植物化学组成和抗菌活性。对PPE抗菌作用进行了针对GR +,GR-细菌和酵母参考菌株的评估,并针对主要皮肤微生物群测试了最有效的提取物。PPE显示出最佳的抗菌作用,麦克风范围为1至128 mg/ml;主要的活性化合物是儿茶素,槲皮素,香草酸和长石酸。对s的DME抗粘附效应中的PPE进行了检查。epider- midis and s。金黄色葡萄球菌和双种物种生物膜通过生物量定量和CFU/ML确定形成。通过使用体内模型中的梅洛尼亚菌(Galleria Mellonella lar-vae)评估提取物毒性。提取物在4和8 mg/ml的s中表现出显着的抗粘附活性,具有特定于S的特定物种作用。表皮和s。金黄色葡萄球菌和双物种生物膜。ppe可以代表可持抗性的无毒层,以特定于物种特异性的方式影响葡萄球菌皮肤定植。这项工作的创新是用食物浪费以平衡皮肤微生物群的。
葡萄球菌金黄色葡萄球菌菌株是MEC A和PBP2A阳性,但在表观上容易受到奥沙西林的影响,据世界各地的研究变得越来越丰富。 金黄色葡萄球菌(OS-MRSA)的奥沙西林易感性导致了由于常规易感性测试的错误识别而导致的治疗失败。 因此,当前研究的目的是确定位于印度南部迈索尔的三级护理机构中OSMRSA的普遍性。 395个从不同临床样本中收集的MRSA分离株被包括在基于实验室的前瞻性研究中。 这些分离株通过标准盘扩散测试在表型上使用oxacillin1μg椎间盘进行测试,并同时通过Vitek2系统确定MIC至Oxacillin。 此外,将MRSA特异性MEC A基因检测应用于这些分离株,以便在基因型上确认其MRSA状态。 PCR的发现表明65%的分离株是MRSA。 VITEK2系统检测到4.06%OS-MRSA分离株,奥沙西林MIC ≤2µg/ml。 椎间盘扩散方法总共确定了13.75%的分离株,因为阿氧林敏感和10%分离株是阿氧林敏感的。 使用VITEK2和DISC扩散技术显示了1.87%的MEC A阳性MRSA分离株的 oxacillin敏感性。 该分析发现较低的奥沙西林MIC分离株,但OS-MRSA发病率相对降低。 使用奥沙西林盘进行常规实验室MRSA检测可能有时会产生虚假的阴性结果,这可能导致抗生素给药和治疗失败不当。葡萄球菌金黄色葡萄球菌菌株是MEC A和PBP2A阳性,但在表观上容易受到奥沙西林的影响,据世界各地的研究变得越来越丰富。金黄色葡萄球菌(OS-MRSA)的奥沙西林易感性导致了由于常规易感性测试的错误识别而导致的治疗失败。因此,当前研究的目的是确定位于印度南部迈索尔的三级护理机构中OSMRSA的普遍性。395个从不同临床样本中收集的MRSA分离株被包括在基于实验室的前瞻性研究中。这些分离株通过标准盘扩散测试在表型上使用oxacillin1μg椎间盘进行测试,并同时通过Vitek2系统确定MIC至Oxacillin。此外,将MRSA特异性MEC A基因检测应用于这些分离株,以便在基因型上确认其MRSA状态。PCR的发现表明65%的分离株是MRSA。VITEK2系统检测到4.06%OS-MRSA分离株,奥沙西林MIC ≤2µg/ml。椎间盘扩散方法总共确定了13.75%的分离株,因为阿氧林敏感和10%分离株是阿氧林敏感的。oxacillin敏感性。该分析发现较低的奥沙西林MIC分离株,但OS-MRSA发病率相对降低。使用奥沙西林盘进行常规实验室MRSA检测可能有时会产生虚假的阴性结果,这可能导致抗生素给药和治疗失败不当。为了将OS-MRSA与MRSA区分开,结合表型和基因型技术至关重要。
致病性金黄色葡萄球菌利用 IsdH 表面受体主动从人类血红蛋白 (Hb) 中获取铁。血红素提取由受体内的三域单元介导,该单元包含其第二 (N2) 和第三 (N3) NEAT 域,由螺旋连接域连接。提取发生在动态复合体中,其中受体与每个珠蛋白链结合;N2 域与 Hb 紧密结合,而受体内大量的域间运动使其 N3 域能够暂时扭曲珠蛋白的血红素口袋。使用分子模拟结合马尔可夫模型,以及停流实验定量测量血红素转移动力学,我们表明受体内的定向域间运动在提取过程中起着关键作用。N3 域运动的方向性和血红素提取的速率由连接 N2 和连接域的短而灵活的域间系绳内的氨基酸控制。在野生型受体中,源自系链的定向运动使 N3 域能够填充能够扭曲 Hb 口袋的配置,而含有改变的系链的突变受体不太能够采用这些构象异构体并通过间接过程缓慢捕获血红素,其中 Hb 首先将血红素释放到溶剂中。因此,我们的结果表明 IsdH 受体内的域间运动在其能力中起着关键作用
致病性金黄色葡萄球菌利用 IsdH 表面受体主动从人类血红蛋白 (Hb) 中获取铁。血红素提取由受体内的三域单元介导,该单元包含其第二 (N2) 和第三 (N3) NEAT 域,由螺旋连接域连接。提取发生在动态复合体中,其中受体与每个珠蛋白链结合;N2 域与 Hb 紧密结合,而受体内大量的域间运动使其 N3 域能够暂时扭曲珠蛋白的血红素口袋。使用分子模拟结合马尔可夫模型,以及停流实验来定量测量血红素转移动力学,我们表明受体内的定向域间运动在提取过程中起着关键作用。N3 域运动的方向性和血红素提取的速率由连接 N2 和连接域的短而灵活的域间系绳内的氨基酸控制。在野生型受体中,源自系链的定向运动使 N3 域能够填充能够扭曲 Hb 口袋的配置,而含有改变的系链的突变受体不太能够采用这些构象并通过间接过程缓慢捕获血红素,其中 Hb 首先将血红素释放到溶剂中。因此,我们的结果表明 IsdH 受体内的域间运动在其能力中起着关键作用
大肠杆菌和金黄色葡萄球菌是导致全球传染病的细菌。随着当今医学的发展,抗生素耐药性病例不断增加,人们越来越需要探索具有杀菌或抑菌特性的替代物质,包括来自天然来源的物质。红姜 (Zingiber officinale var. rubrum) 以其药用特性而闻名,尤其是其抗菌作用。这项研究旨在评估红姜抑制大肠杆菌和金黄色葡萄球菌生长的能力。进行了植物化学测试以确定提取物中的活性化合物,同时使用最低抑菌浓度 (MIC) 评估抗菌活性。用分光光度计和扫描电子显微镜 (SEM) 研究了抗菌作用机制。结果表明,红姜提取物含有生物碱、黄酮类化合物、皂苷、单宁和萜类化合物等活性化合物。大肠杆菌的最低抑菌浓度为 125 μg/ mL,金黄色葡萄球菌的最低抑菌浓度为 500 μg/ mL。在 260 nm 和 280 nm 吸光度下测量,添加 MIC 1 和 MIC 2 的红姜乙醇提取物与对照组相比显著影响细胞渗漏 (p<0.01)。SEM 分析显示,用红姜提取物处理的细菌细胞出现受损和空泡。因此,可以得出结论,红姜提取物对大肠杆菌和金黄色葡萄球菌的生长具有抑制作用,可以推荐作为治疗传染病的天然抗生素的替代品。
ntimicrobial抗药性(AMR)是全球主要的健康问题,与2019年全球估计495万人死亡有关(1,2)。尽管已经对AMR对临床和经济结果的影响进行了广泛的研究,但对AMR对感染反复感的影响相对较少,这是一项重大事件,导致大量疾病,死亡和医疗保健成本(3)。复发在菌血症患者中特别关注,他们通常脆弱并且患有潜在的疾病,因为菌血症与高死亡率和AMR有关(4)。AMR与更大的感染严重程度,治疗衰竭更高的风险以及更长的住院时间有关,所有这些都可能影响复发的风险(5-7)。很少有研究研究AMR是复发性菌血症的潜在危险因素,并且所有研究都限于归因于引起初始感染的同一细菌的感染的复发(8-13)。相反,少数不针对特定细菌物种或患者人群(例如,具有潜在条件的人)和研究危险因素在1年内复发的危险因素并不认为AMR是潜在的危险因素(14-16)。然而,在研究AMR与复发之间的联系时,重要的是要考虑延长的微生物不平衡,即广谱抗生素暴露(即标准细菌治疗)可以诱导宿主微生物组。AMR在初始菌血症发作中可能会增加这种不平衡包括对宿主对定殖和感染的易感性的影响(17)以及对抗生素耐药细菌的选择和持续时间的影响,例如,扩展的谱β-内酰胺酶(ESBL)可能会超过1年 - 产生肠tocteriaceae(18)。
在本文中,描述了快速,容易且廉价的声学方法用于合成Florfenicol-Chitosan纳米复合材料,并评估其针对大肠杆菌(ATCC35218)的抗细菌作用,Salmonella Typhymurium Typhymurium(ATCC14028)和葡萄球菌。金黄色(ATCC29213)。Florfenicol-Chitosan纳米复合材料的索引,识别和形态特性充分表征。ZETA对Florfenicol -Chitosan纳米复合材料的潜力的结果为-28 mV。Brunner-Emmett-Teller理论(BET)表面积分别为13.3、73.2和103.69 m 2 /g,对于Florfenicol,壳聚糖纳米颗粒和Florfenicol-Chitosan纳米复合材料。拉曼图表证实了佛罗里芬酸 - 壳聚糖纳米复合材料的形成而没有任何污染。透射电子显微镜(TEM),扫描电子显微镜(SEM)和原子力显微镜(AFM)图像和数据示出了球形的球形至佛罗里芬酸纳米粒子的亚球形,尺寸小于75 nm。florfenicol-Chitosan纳米复合材料作为抗细菌剂的显着结果说明了纳米技术的能力。然而,筛选抗菌活性,而由制备的纳米复合材料引起的抑制区为24.7 mm,30.6毫米和29.3毫米,而对大肠杆菌的天然药物的17.7 mm,16 mm,16 mm和18.7毫米,相对于大肠杆菌,Salmonella typhymurium typhymurium typhymurium和葡萄球菌和葡萄球菌aureus aureus aureus aureus aureus aureus aureus。关键字:florfenicol;壳聚糖纳米颗粒; Florfenicol-Chitosan纳米复合材料;抗菌活性;微观技术。
蜂蜜对金黄色葡萄球菌和假单胞菌的临床分离物的功效+2347064608775抽象皮肤是人体防御入侵微生物的第一道防线。由于切割或燃烧而遭到损害,感染可能会设置在伤口中。蜜蜂生产的蜂蜜可以作为可用抗生素的替代方法,微生物已经变得具有抗性。这项研究是为了评估萨马鲁(Samaru),扎里亚(Zaria)对细菌伤口分离株的蜂蜜的疗效。确定了两个蜂蜜样品的近端组成。 铜绿假单胞菌和金黄色葡萄球菌的纯分离株对使用琼脂良好扩散方法通过无菌测试的两个蜂蜜样品的池受到质疑。 使用管稀释法确定蜂蜜的MIC和MBC。 蜂蜜样品的平均pH值为4.93,组成为76.23%碳水化合物,0.16%的灰分,2.23%的脂质和3.45%的蛋白质。 蜂蜜表现出其对铜绿假单胞菌(20.0毫米)的最高活性,比金黄色葡萄球菌(16.0 mm)的浓度为100%v/v。 蜂蜜的活性以降低的浓度降低,直到以25%V的浓度记录没有活性为止。 对金黄色葡萄球菌的蜂蜜的麦克风为25%v/v,对铜绿假单胞菌的麦克风为12.5%v/v。 但是,针对金黄色葡萄球菌和铜绿假单胞菌的蜂蜜的MBC每个为25%v/v。确定了两个蜂蜜样品的近端组成。铜绿假单胞菌和金黄色葡萄球菌的纯分离株对使用琼脂良好扩散方法通过无菌测试的两个蜂蜜样品的池受到质疑。使用管稀释法确定蜂蜜的MIC和MBC。蜂蜜样品的平均pH值为4.93,组成为76.23%碳水化合物,0.16%的灰分,2.23%的脂质和3.45%的蛋白质。蜂蜜表现出其对铜绿假单胞菌(20.0毫米)的最高活性,比金黄色葡萄球菌(16.0 mm)的浓度为100%v/v。蜂蜜的活性以降低的浓度降低,直到以25%V的浓度记录没有活性为止。 对金黄色葡萄球菌的蜂蜜的麦克风为25%v/v,对铜绿假单胞菌的麦克风为12.5%v/v。 但是,针对金黄色葡萄球菌和铜绿假单胞菌的蜂蜜的MBC每个为25%v/v。蜂蜜的活性以降低的浓度降低,直到以25%V的浓度记录没有活性为止。对金黄色葡萄球菌的蜂蜜的麦克风为25%v/v,对铜绿假单胞菌的麦克风为12.5%v/v。但是,针对金黄色葡萄球菌和铜绿假单胞菌的蜂蜜的MBC每个为25%v/v。这项研究证实,扎里亚出售的蜂蜜具有针对伤口病原体的抗菌活性。关键字:蜂蜜,功效,金黄色葡萄球菌,铜绿假单胞菌,伤口。引言伤口是暴露于皮下组织的皮肤上的一种破坏。伤口容易出现微生物定植和增殖(Bowler等,2001)。全球多药耐药物种的兴起。因此,具有抗菌潜力(例如使用蜂蜜)的替代天然来源目前受到了极大的关注(Mansur and Mukhtar,2023年)。蜂蜜是由花蜜花蜜产生的天然甜液体物质(Saranraj和Sivasakthi,2018年)。自远古时代以来,蜂蜜已被用于伤口护理。它已广泛用于治疗急性,慢性,创伤和手术后伤口。它也用于用于溃疡,烧伤,眼部疾病,皮肤病,咽部问题和坏死区域。因此,蜂蜜是其他抗菌剂的替代品,具有有希望的医学实践治疗潜力(Almasaudi,2021年)。蜂蜜对大多数类型的革兰氏阳性和革兰氏阴性细菌作用(Mohaptra等,2011)。蜂蜜的不同成分有助于其抗菌活性。这些成分包括糖,多酚化合物,过氧化氢,1,2-二氨基苯甲化合物和蜜蜂防御素-1;但是,他们的
疫苗开发策略已经从将整个生物体用作免疫原转变为单个抗原,而进一步转向了表位。由于表位是抗原的相对微小且具有免疫学相关的部分,因此它具有刺激更健壮和特定的免疫反应的潜力,同时导致最小的不良反应。结果,疫苗开发的最新重点是开发可以靶向多种毒力机制的多诊断疫苗。相应地,我们设计了多种作用疫苗候选B(多-B细胞表位免疫原)和CTB-B(辅助 - 霍乱 - 霍乱毒素亚基B(CTB) - 与S. aureus相连。设计的疫苗由八个特征良好的金黄色葡萄球菌毒力因子的B细胞表位段(20-mer)组成,即CLFB,FNBPA,HLA,HLA,ISDA,ISDA,ISDB,ISDB,LUKE,LUKE,SDRD和SDRE连接。使用Freund>的C57BL/6小鼠表示设计的疫苗
。CC-BY 4.0 国际许可证永久有效。它以预印本形式提供(未经同行评审认证),作者/资助者已授予 bioRxiv 许可,可以在该版本中显示预印本。版权所有者于 2024 年 2 月 19 日发布了此版本。;https://doi.org/10.1101/2024.02.19.580932 doi:bioRxiv 预印本