摘要 - 量词计算引入了一种新的计算范式,该范式有望解决无法通过经典计算机效率解决的问题。因此,量子应用程序将越来越多地集成到经典应用中。要将这些复合应用程序带入生产中,需要进行自动部署和编排技术,以避免手动易行错误和耗时的过程。对于非量化应用程序,近年来已经开发了各种部署技术。但是,量子应用程序的部署目前与非量子应用程序显着不同,因此导致了用于部署量子应用程序的不同建模程序。为了克服这些问题,我们提出了TOSCA4QC,该TOSCA4QC介绍了两种部署建模样式,该模型基于拓扑和编排规范的云应用程序(TOSCA)标准(TOSCA)标准,用于自动化量子应用的部署和编排:(i)SDK规格模型的模型,以覆盖所有技术模型,以涵盖所有技术部署详细信息(II)技术的详细信息(II)详细信息(II)详细信息(II)详细信息(II)。原则。我们进一步展示了如何将现有的模型驱动开发(MDD)方法应用于将SDK-静态模型重新定为可执行的SDK特定模型。我们证明了原型实施的实际可行性,作为Tosca生态系统Opentosca的扩展以及IBMQ和量子模拟器的三个案例研究。索引术语 - Tosca,量子计算,部署自动化,建模,编排
通过观察、问卷调查和其他技术,心理学家已经能够引出个体操作员(通常是飞行员)的心理模型。然而,将设计与特定个体的心理模型进行比较只能提供非常具体的信息;我们感兴趣的是设计是否容易产生模式混淆,为此,将设计与通用心理模型进行比较比将设计与个体心理模型进行比较更有用。这种通用模型可以从培训材料中提取(培训手册的目的之一,通常是隐含的,就是诱导足够的心理模型),也可以指定为明确的要求(例如,“这个按钮应该像一个切换按钮一样运行”)。认知研究对这些模型的性质提供了两个重要见解:首先,它们可以用称为“状态机”的数学结构紧凑地表示;第二,它们往往相当简单(这可以通过应用两个规范的简化来解释[3])。
太空 ISAC 运营着一个监测中心,用于监测和向全球太空界报告所有威胁和危险信息。监测中心致力于分析、验证和融合来自不同来源的信息,以追踪对手在地面和太空中的活动。它通过从公开信息、政府合作伙伴共享的信息和成员提交的信息中提取和关联数据来实现这一目标。监测中心使用一组行业采用的框架来关联信息,特别是 MITRE ATT&CK、太空攻击研究与战术分析 (SPARTA) 和 STIX。
这些相互关联的合同链会给用户带来法律问题和业务挑战。较长的合同链可能会产生尚未解决的法律问题(例如,如果合同链中的上游协议是自主执行的,那么违反该协议会对下游协议产生什么影响?)。无论各方对这种情况的协议是什么,都必须反映在建立区块链及其操作软件的协议中。对客户业务施加的监管要求可能会产生其他法律问题。例如,医疗记录和保险环境中的区块链合同系统必须符合患者隐私保护要求;金融交易及其隐私要求也是如此。
✓ + 20 years supplying Solutions to OEMs & TIER-Is ✓ Software Defined company, a right partner for SDV ✓ Leaders on cutting-edge technology for safe and precise GNSS positioning with Connected Autonomous Vehicles ✓ Patents for highly precise and safe GNSS solutions for AD and Cybersecurity ✓ Deep strength on embedded SW and Cloud-native applications over different platforms.✓用于移动应用,C-ITS服务和V2X通信技术的数字化专家
国际医学与生物系统物理学学院6-8 2020年11月8日结论:Alexnet和Googlenet体系结构的比较,以对树类型进行分类
决策算法在社会中的存在感如今正在迅速增加,同时人们也开始担心其透明度以及这些算法可能成为新的歧视来源。事实上,许多相关的自动化系统已被证明会根据敏感信息做出决策或歧视某些社会群体(例如,某些用于人员识别的生物特征识别系统)。为了研究当前基于异构信息源的多模态算法如何受到数据中的敏感元素和内部偏见的影响,我们提出了一个虚构的自动招聘测试平台:FairCVtest。我们使用一组有意识地以性别和种族偏见进行评分的多模态合成档案来训练自动招聘算法。FairCVtest 展示了此类招聘工具背后的人工智能(AI)从非结构化数据中提取敏感信息并以不良(不公平)的方式将其与数据偏见结合起来的能力。最后,我们列出了最近开发能够从深度学习架构的决策过程中删除敏感信息的技术的列表。我们使用其中一种算法(SensitiveNets)来实验歧视感知学习,以消除我们多模态 AI 框架中的敏感信息。我们的方法和结果展示了如何生成更公平的基于 AI 的工具,特别是更公平的自动招聘系统。
摘要。胸肌分割是乳腺磁共振成像(MRI)的各种计算机辅助应用中的关键步骤。由于胸部和乳房区域之间的伪影和同质性,胸肌边界估计并不是一项琐碎的任务。在本文中,提出了一种基于深度学习的全自动分割方法,以准确描述轴向乳房MR图像中的胸肌边界。提出的方法涉及两个主要步骤:胸肌分割和边界估计。对于胸肌分割,基于U-NET结构的模型用于从输入图像中分离胸肌。接下来,通过候选点检测和轮廓分割来估计胸肌边界。使用两个Real-World数据集,我们自己的私人数据集和一个公开可用的数据集对所提出的方法进行了定量评估。第一个数据集包括12名患者乳房MR图像,第二个数据集由80名患者乳房MR图像组成。所提出的方法在第一个数据集中达到了95%的骰子得分,第二个数据集的骰子得分为89%。在大规模定量乳房MR图像上评估该方法的高分割性能表达了其在将来的乳腺癌临床应用中的潜在适用性。