第一部分。准备RHEL安装以准备RHEL安装环境的基本步骤,以满足系统的要求,支持的体系结构,并为安装媒体提供自定义选项。此外,它涵盖了用于创建可引导安装媒体,设置基于网络的存储库以及配置UEFI HTTP或PXE安装源的方法。指南。
图 3. ML 方法对钙钛矿与非钙钛矿进行分类。a. 根据数据集中 XRD 模式范围(2 )的 CNN 预测准确度,b. 根据数据集中 XRD 模式范围(2 )的 CNN 混淆矩阵真阴性,c. 根据数据集中 XRD 模式范围(2 )的 CNN 混淆矩阵假阳性,d. 根据数据集中 XRD 模式范围(2 )的 CNN 混淆矩阵假阴性,e. 根据数据集中 XRD 模式范围(2 )的 CNN 混淆矩阵真阳性,f. XRD 模式(d 间距(Å))对于随机森林分类的特征重要性(步长:2.18°(2 ))。
摘要 - 自治车辆(AVS)正在迅速前进,其中4级AVS已经在现实世界中运行。curland Avs仍然落后于人类驾驶员的适应性和表现,通常表现出过度保守的行为,偶尔违反交通法律。现有的解决方案(例如运行时执行)通过自动修复运行时的AV计划轨迹来减轻这种情况,但是这种方法缺乏透明度,应该是最后一个度假胜地的度量。,优先选择AV修复是概括超出特定事件并为用户解释的。在这项工作中,我们提出了Fix d Rive,该框架分析了违反违法行为或法律行为的驾驶记录,以产生AV驾驶策略维修,以减少再次发生此类事件的机会。这些维修是用µ驱动器捕获的,µ驱动器是一种高级域特异性语言,用于针对基于事件的触发器指定驾驶行为。为最先进的自主驾驶系统Apollo实施,Fi d rive识别和可视化驾驶记录中的关键时刻,然后使用零射门学习的多模式大语言模型(MLLM)来生成µ驱动程序。我们在各种基准方案上测试了F IX D Rive,并发现生成的维修改善了AV的性能,相对于以下交通法律,避免碰撞并成功到达目的地。此外,在实践中,修复AV(15分钟的离线分析和0.08美元)的直接成本在实践中是合理的。索引术语 - 自主车辆,自动驾驶系统,多模式大型语言模型,驾驶合规性
摘要:Palimpsests是已被刮擦或洗涤以重复使用的手稿,通常是另一个文档。恢复这些工具的不足文字对人文学者的学者具有重大兴趣。因此,学者经常采用多光谱成像(MSI)技术来渲染可见的无斑点。尽管如此,在许多情况下,这种方法可能不够,因为所得图像中的不足仍然被过度文字所掩盖。生成人工智能领域的最新进展为识别高度复杂的视觉数据中的模式并相应地重建它们的前所未有的机会。因此,我们提出将这一挑战作为计算机视觉中的一项介绍任务,旨在通过生成图像插入来增强未底文本的可读性。为了实现这一目标,我们设计了一种新的方法来生成合成的多光谱图像数据集,从而提供了大量的培训示例而无需手动注释。此外,我们还采用了该数据集来微调生成涂层模型,以提高palimpsest Undertext的可读性。使用来自西奈山的高加索阿尔巴尼亚底部文字的格鲁吉亚紫菜的彩色和MSI图像证明了这种方法的功效。
许多实验室虽然历来注重成本,但一直努力以尽可能经济的方式向临床医生同事提供准确的结果。然而,在过去五年里,尤其是疫情后,实验室在人力资源极为宝贵的时代难以管理实验室运营。作为回应,许多实验室正在探索“微生物实验室自动化”(MLA)仪器来补充常规分析,允许技术人员重新部署到实验室的其他区域或执行更复杂或深奥的任务。人工智能(AI)的进步进一步增强了MLA自动化处理标本工作流程的能力,使这些仪器无需人工干预即可报告培养阴性和阳性结果。我们评估了 Copan 的 PhenoMATRIX (PM) 人工智能软件(意大利布雷西亚 Copan),该软件能够准确地将尿液培养结果分配到无生长 (NG)、无显著生长 (NSG;<10 个菌落,单个分离株) 或大肠杆菌 (EC) 类别,以便自动向临床医生发布结果。
智能技术系统(ITS)的开发需要高级方法,以满足不断增长的系统复杂性和各种利益相关者要求的种类。基于模型的系统工程(MBSE)已被证明是一种有前途的开发方法,可以应对不断增长的系统复杂性和提高企业敏捷性(Friedenthal 2023)。通常,系统工程(SE)致力于开发整体解决方案和集成系统组件以满足客户需求和功能(Hitchins 2007)。se首先定义系统要求,然后设计系统元素,合成和复杂系统验证(Walden 2023)。MBSE是基于文档的SE的扩展,其中有关系统的信息在系统模型中被形式化。这种以模型为中心的方法可以为跨学科系统开发所需的一致且可追溯的系统设计(Friedenthal 2023)。系统模型有助于更深入地了解系统需求与系统新兴属性,内部结构和行为之间的联系。建模使整合易于管理的不同观点的复杂性。系统模型是在研讨会中设计的,其中随后将模型数字化,或者使用建模工具直接以数字形式进行数字化(Tschirner 2016)。正式的建模语言,例如Sysml(Delligatti 2014),用于以正式的方式捕获系统设计。
域模型采集已被确定为计划技术的应用,尤其是在叙事计划中的瓶颈。以自动化的方式从叙事文本中学习动作模型对于克服这种障碍,但由于此类文本的固有复杂性而具有挑战性至关重要。我们使用我们完全自动化的,无监督的系统Naruto介绍了从叙事文本得出的计划域模式的评估。我们的系统结合了结构事件提取,常识事件的预测以及文本矛盾和相似性。评估结果表明,火影忍者生成的域模型比现有的完全自动化的甲基动物更高,甚至有时与在人为援助的情况下与半自动化方法创建的域相提并论。
摘要 - 头皮和颅内脑电图(EEG)对于诊断脑部疾病至关重要。但是,头皮脑电图(seeg)被头骨衰减并被伪像污染。同时,颅内脑电图(IEEG)几乎没有文物,并且可以捕获所有大脑活动,而无需任何衰减,因为靠近大脑。在这项研究中,目的是通过将SEEG映射到IEEG来提高SEEG的性能。为此,我们在这里使用生成的对抗网络开发了一个深神经网络,以估算IEEG的SEEG。所提出的方法适用于Seeg和IEEG,并从癫痫发作中同时记录以检测间隔癫痫样放电(IEDS)。所提出的方法检测IEDS的精度为76%的IED,并以最先进的方法为止。此外,它至少比比较方法少十二倍。
摘要:收割机自动记录的数据是一种很有前途的、可能非常有用的科学分析信息来源。大多数研究人员已将 StanForD 文件用于此目的,但这些文件很难获取,需要进行一些预处理。本研究利用了类似数据的新来源:JDLink,这是一项由机器制造商运营的基于云的服务,可实时存储来自传感器的数据。此类数据量巨大,难以理解和有效处理。数据挖掘技术有助于在此类数据库中发现趋势和模式。使用经典回归(线性和对数)、聚类分析(树状图和 k 均值)和主成分分析 (PCA) 分析了在波兰东北部工作的两台中型收割机的记录。线性回归表明,树木的平均大小是对每立方米燃料消耗和生产率影响最大的变量,而每小时燃料消耗也取决于低速行驶距离或高发动机负荷时间份额等因素。聚类和 PCA 的结果更难解释。树状图显示了最不相似的变量:每天采伐的总体积、每天的总燃料消耗和高转速 (RPM) 的工作时间份额。K 均值聚类使我们能够识别特定变量聚类更突出的时期。尽管 PCA 结果解释了近 90% 的方差,但机器之间的结果尚无定论,因此需要在后续研究中进行仔细审查。生产率值(平均约 10 m 3 /h)和燃料消耗率(平均 13.21 L/h,1.335 L/m 3)与其他作者在可比条件下报告的结果相似。本研究获得的一些新指标包括,例如,低速行驶距离(每天约 7 公里)或发动机在低、中或高负荷下运行的时间比例(分别为 34%、39% 和 7%)。本研究的假设是使用不从外部来源补充的数据,并且尽可能少地进行处理,这将分析方法限制在无监督学习上。在后续研究中扩展数据库将有助于监督学习技术在建模和预测中的应用。
摘要:收割机自动记录的数据是一种很有前途的、可能非常有用的科学分析信息来源。大多数研究人员已将 StanForD 文件用于此目的,但这些文件很难获取,需要进行一些预处理。本研究利用了类似数据的新来源:JDLink,这是一项由机器制造商运营的基于云的服务,可实时存储来自传感器的数据。此类数据量巨大,难以理解和有效处理。数据挖掘技术有助于在此类数据库中发现趋势和模式。使用经典回归(线性和对数)、聚类分析(树状图和 k 均值)和主成分分析 (PCA) 分析了在波兰东北部工作的两台中型收割机的记录。线性回归表明,树木的平均大小是对每立方米燃料消耗和生产率影响最大的变量,而每小时燃料消耗也取决于低速行驶距离或高发动机负荷时间份额等因素。聚类和 PCA 的结果更难解释。树状图显示了最不相似的变量:每天采伐的总体积、每天的总燃料消耗和高转速 (RPM) 的工作时间份额。K 均值聚类使我们能够识别特定变量聚类更突出的时期。尽管 PCA 结果解释了近 90% 的方差,但机器之间的结果尚无定论,因此需要在后续研究中进行仔细审查。生产率值(平均约 10 m 3 /h)和燃料消耗率(平均 13.21 L/h,1.335 L/m 3)与其他作者在可比条件下报告的结果相似。本研究获得的一些新指标包括,例如,低速行驶距离(每天约 7 公里)或发动机在低、中或高负荷下运行的时间比例(分别为 34%、39% 和 7%)。本研究的假设是使用不从外部来源补充的数据,并且尽可能少地进行处理,这将分析方法限制在无监督学习上。在后续研究中扩展数据库将有助于监督学习技术在建模和预测中的应用。