自2020年以来,会议组织者是约翰·阿塔纳索夫(John Atanasoff)自动与信息学协会,瓦尔纳技术大学,保加利亚大学IEEE和保加利亚科学工程联盟的联合会。ICAI'24的会议计划包括:全体会议,邀请研讨会和讲习班,科学会议,年轻研究人员学校,公司演讲和展览。会议的目的是将对自动化,信息,计算机科学,人工智能等现代技术的开发和实施感兴趣的国际研究人员和工业从业人员汇集在一起。
• Windows Embedded POS Ready 2009 • 3M 15 英寸多点触控可分级触摸屏 • 1500 尼特 LED 背光半透反射显示屏 • 定制包装以增强您的网站品牌 • 100% 不锈钢外壳 • 安全的 EMV Lvl 2 信用卡/借记卡处理 • 用于在 Pump 和店内进行代码销售的 POS 界面 • 带有可编程收据信息的高速热敏打印机 • 非接触式近场通信接收器 • 3 个室外级 10W 扬声器,用于立体声/对讲 • 带有雷电抑制功能的 100 BaseT 以太网端口 • 第三方认证的 PCI 兼容信用卡和礼品卡接受 • 售后广告(“托管视频”) • 清洗菜单功能可显示每次清洗所包含的内容 • 选择销售功能可允许销售最多两项额外服务 • 带有可选安全警报的锁定系统
工业系统自动化、视觉与控制 (AVCSI) 实验室 阿尔及利亚奥兰科技大学自动化工程系。 ORCID:https://orcid.org/0000-0002-3781-9779 doi:10.15199/48.2023.03.43 使用 3D-TLM 方法和 COMSOL Multiphysics 软件对基于 MEMS 的气体传感器进行微加热器热分析 摘要。带有金属氧化物 (MOx) 的气体传感器为 MEMS 传感器提供了新的机会,因为它们拥塞少、灵敏度高、响应速度快。微热板是这些传感器中控制传感层温度的关键组件。在这项工作中,已经制造并设计了一种蜿蜒的铂基加热器。传输线矩阵 3D-TLM 方法和 COMSOL 软件用于预测均匀的温度分布。因此,在设计任何气体传感器和 MEMS 之前,微加热器热区的温度控制非常重要。压力。使用金属 (MOx) 技术可以将 MEMS 技术与其他技术结合起来。 Płyta grzejna jest kluczowym elementem tych czujników do kontrolowaniaTemperature Warstwy czujnikowej。 W tej pracy wykonano i zaprojektowano Meandrowy grzejnik na bazie platyny。 Metoda 3D-TLM 是一种通过 COMSOL 程序传输的 Macierz 语言,可用于测量温度。控制温度和微机电温度是 MEMS 项目中的一个重要问题。 ( 分析方法 3D-TLM i oprogramowaniem COMSOL Multiphysics dla czujnika gazu MEMS ) 关键词:基于 MEMS 的气体传感器、微型加热器、3D-TLM、COMSOL Multiphysics、均匀温度分布。主题:基于 MEMS 的气体传感器、微控制器、3D-TLM、COMSOL Multiphysics、温度传感器。简介基于 MEMS 的气体传感器(微机电系统)具有相当有趣的特点,例如高灵敏度、低成本和越来越小的尺寸。MOX 传感器是家庭、商业应用和工业安全设备中最主要的固态气体检测设备。然而,这种传感器的性能受到其加热板的显著影响,加热板控制传感层的温度,传感层应在加热器区域所需的温度范围内,以便检测不同的气体。这些传感器是由 Taguchi [1] 首次开发的。它们的工作原理基于金属氧化物层的电导率随周围气体性质的变化而变化。然后,这些传感器的结构可以小型化,因为它们的制造与微电子工艺兼容。这样可以降低成本,并可以将这些传感器和相关电子电路集成到单个组件中。许多研究都集中在微传感器的设计和建模上,例如 M. Dumitrescu 等人 [2] 和 S.Semancik 等人 [3] 的研究,他们在兼容的 SiO 2 平台上引入了多晶硅微加热板平台并集成了片上电路。M. Afridi 等人 [4] 设计了一种带有多晶硅微加热器的单片 MEMS 气体传感器。之后,J. Cerda Belmonte 等人 [5] 描述了检测 O 2 和 CO 气体的制造工艺。2007 年,Ching-Liang Dai 等人 [6] 设计了一种基于 WO3 纳米线的片上湿度传感器,JF Creemer 等人 [7] 提出了一种 TiN 微加热板。而 G.Velmathi 等人 [8] 提出了一种基于 TiN 微加热板的传感器。 [8] 提出了各种微加热器几何形状,M. Gayake、Jianhai Sun [9, 10] 通过有限元法模拟比较了这些基于聚酰亚胺的微加热器几何形状。2017 年,T. Moseley [11] 介绍了半导体金属氧化物气体传感器技术的发展进展,刘奇等人 [12] 综述了基于单层 SiO2 悬浮膜的新型形状微加热板的热性能可能性。R. Jagdeep 等人 [13] 提到
为了提高业务生产力并加强其管理基金会,Tokai Electronics Co.,Ltd。同时在其总部及其全资子公司Tokai Automatics Co.,Ltd中同时实施了SaaS ERP“ SAP S/4HANA®云公共版”。和Tokai Techno Center Co。,Ltd。,并于2024年10月完成此操作。Sigmaxyz支持此实施。
IMC Argus Fit UPS模块用于弥合通常在车辆电气系统中发生的短期功率故障。典型的应用程序是在启动过程或开始操作的开始操作的车辆中的移动测量任务。该模块配备了NIMH电池。这些具有足够的能力,可以持续到最大。每个30 s。 如果单个功率故障超过30 s的持续时间,则会触发系统的自动割盘。每个30 s。如果单个功率故障超过30 s的持续时间,则会触发系统的自动割盘。
自动化与机器人技术 自动控制与机器人技术 土木工程 陶瓷学 建筑材料化学 法医学化学 计算机科学(英语) 网络安全 技术与计算机科学教育 生态能源 电子学 电子与电信 电气工程 电力工程 可再生能源与能源管理 医学物理学 技术物理学 大地测量学、测绘与制图 地球物理学 地理信息 地理信息学 应用地质学 地质旅游 地质工程与钻孔采矿 计算机科学(英语) 计算机科学 - 数据科学 计算机科学与计量经济学 计算机科学与智能系统
1个技术科学学院,西迪·穆罕默德·本·阿卜杜拉大学,摩洛哥2摩洛哥2工程科学实验室,西迪·穆罕默德·本·阿卜杜拉大学Taza的多学科学院,摩洛哥塔萨35000; karim.elmoutaouakil@usmba.ac.ma 3计算科学与数学建模中心,考文垂大学,考文垂路,英国考文垂CV1 5FB; vasile.palade@coventry.ac.uk(v.p。); uche.onyekpe@ofcom.org.uk(U.O.)4计算机科学,信号,自动和认知实验室,Dhar El Mahraz的科学学院,Sidi Mohamed Ben Abdellah University,Fès-Atlas 30000,摩洛哥; ali.yahyaouy@usmba.ac.ma 5通信办公室,劳里斯顿广场15号,爱丁堡EH3 EH3 9EP,英国6英国工程学院,艺术,技术与环境学院,英格兰西部的艺术,技术与环境学院,布里斯托尔BS16 16 1Qy,英国。 eyo.eyo@uwe.ac.uk *通讯:anas.charroud@usmba.ac.ma†这些作者对这项工作也同样贡献。
1 麦哲伦大学电气工程系,蓬塔阿雷纳斯 6210427,智利;pbarria@rehabilitamos.org 2 南克鲁斯狮子俱乐部康复中心,蓬塔阿雷纳斯 6210133,智利;kbaleta@rehabilitamos.org 3 脑机接口系统实验室,系统工程和自动化系,米格尔·埃尔南德斯埃尔切大学,03202 埃尔切,西班牙 4 哥伦比亚胡里奥加拉维托工程学院生物医学工程系,波哥大 111166,哥伦比亚;angie.pino-l@mail.escuelaing.edu.co (AP);bryan.tovar@mail.escuelaing.edu.co (NT);daniel.gomez-v@mail.escuelaing.edu.co (DG-V.); marcela.munera@escuelaing.edu.co (MM) 5 圣胡安国立大学自动化研究所,阿根廷圣胡安 5400 6 圣埃斯皮里图联邦大学电气工程研究生院,巴西维多利亚 29075-910;camilo.diaz@ufes.br * 通信地址:carlos.cifuentes@escuelaing.edu.co † 这些作者对这项工作做出了同等贡献。
主要学习项目 法国卢瓦尔河谷国立应用科学学院提供 4 个专业系 5 年制理学硕士工程学位课程 ( 工程师文凭 ) 和一个国家景观建筑师学位: - 能源、风险、环境 - ERE(学徒课程) - 工业风险控制 - MRI - 信息技术和网络安全 - STI(学生或学徒身份) - 工业系统工程 - GSI(学生或学徒身份) - 自然和景观建筑学院 -ENP 法国卢瓦尔河谷国立应用科学学院被授权与图尔大学和奥尔良大学联合颁发硕士学位。 以英语授课的硕士课程: - 基础物理学硕士学位“国际 - 图尔大学的“电子、电能和自动化”硕士学位(3EA)。