自动驾驶汽车的未来在于以人为中心的设计和先进的AI Capabilies。未来的自动驾驶汽车不仅会跨乘客,而且还将互动并适应他们的欲望,从而使旅程变得舒适,有效且令人愉悦。在本文中,我们提出了一个新颖的框架,该框架利用大型语言模型(LLMS)来增强自动驾驶汽车的决策过程。通过整合LLMS的自然语言能力和上下文理解,专业工具使用,协同推理,并与自动驾驶汽车的各种模块进行作用,该框架旨在将LLMS的先进语言和推理能力无缝整合到自动驾驶中。拟议的框架具有革新自动驾驶汽车运行方式,提供个性化援助,持续学习和透明决策的潜力,最终为更安全,更有效的自动驾驶技术做出了贡献。
当前用于自动驾驶计算机视觉的深层神经网络(DNNS)通常在仅涉及单一类型的数据和urban场景的特定数据集上进行培训。因此,这些模型努力使新物体,噪音,夜间条件和各种情况,这对于安全至关重要的应用至关重要。尽管持续不断努力增强计算机视觉DNN的弹性,但进展一直缓慢,部分原因是缺乏具有多种模式的基准。我们介绍了一个名为Infraparis的新颖和多功能数据集,该数据集支持三种模式的多个任务:RGB,DEPTH和INDRARED。我们评估了各种最先进的基线技术,涵盖了语义分割,对象检测和深度估计的任务。更多可视化和
3。职责3.1。设计,开发和实施为自治代理系统的代码,重点是但不限于专注于行为模型,因果模型,世界模型,优先级机制,奖励机制,社交交流机制和输入输出输出界面。3.2。使用内部和外部系统和基准评估和评估自主剂系统的性能。3.3。设计,开发和实施用于评估自主代理3.4的性能的系统。设计,开发和实施API功能和体系结构功能。3.5。编写代码以支持测试,分析,验证和验证代码库,包容性自主代理系统,性能评估系统,API系统和其他系统。3.6。考虑可扩展性,算法设计,基础架构以及云提供商系统和服务的整体系统设计,编排和部署。
来自图像的深度估计是具有广泛应用的计算机视觉中的一个长期问题。对于基于视觉的自动驾驶系统,感知深度是理解道路对象和建模3D环境图的相关性的不可或缺的模块。由于深度神经网络用于求解各种视觉概率,因此基于CNN的方法[2-5,13,39 - 42,44,44,46,48,52]主导了各种深度基准。根据输入格式,它们主要将其分为多视图深度估计[3,13,23,26,44,45,51,53]和单视深度估计[14 - 16,19,37,38]。多视图方法估计深度的假设,即给定的深度,相机校准和摄像头姿势,这些像素应相似。他们依靠表现几何形状来三角形高质量深度。但是,多视图方法的准确性和鲁棒性在很大程度上依赖于相机的几何配置以及视图之间匹配的对应关系。首先,需要足够翻译相机以进行三角度。在自主驾驶的情况下,汽车可能会停在交通信号灯处或不移动而不移动,这会导致故障三角剖分。此外,多视图方法遭受动态对象和无动电区域的影响,它们在自动驱动方案中无处不在。另一个问题是对移动车辆的施加优化。在存在的大满贯方法中不可避免地噪声,更不用说具有挑战性和可取的情况了。具体来说,我们提出了一个两个分支网络,即例如,一辆机器人或自动驾驶汽车可以在不重新校准的情况下部署多年,原因是嘈杂的姿势。相比之下,作为单视图方法[14 - 16,19,37,38]依赖于对场景的语义理解和透视投影提示,它们对无纹理区域,动态对象,而不是依赖相机姿势更为易用。但是,由于规模歧义,其性能仍然远非多视图方法。在这里,我们倾向于考虑是否可以很好地结合两种方法的好处,以实现自主驾驶场景中的稳健和准确的单眼视频深度估计。尽管已经在先前的工作中探索了基于融合的系统[1,9],但他们都假定了理想的相机姿势。结果是融合系统的性能甚至比单视深度估计的噪声姿势还差。为了解决这个问题,我们提出了一个新型的自适应融合网络,以利用多视图和单视图方法的优势,并减轻其缺点,以保持高度的精度,并在噪声姿势下提高系统的影响力。一个靶向单眼深度提示,而另一个则利用多视图几何形状。两个分支都预测了深度图和置信图。补充语义提示和边缘细节在多视图分支的成本汇总中丢失了
我们被媒体大肆宣传,谈论智能复杂系统、大数据分析 [附录中的第 1 项] 和机器学习、机器人和人工智能 [附录中的第 2 项]、超级自动化以及人机之争 [附录中的第 3 项] 的希望和危害。然而,严肃的研究,尤其是来自工程和信息通信技术 (ICT) 背景的研究,以及伦理学家和最终用户的研究,却严重缺乏。炒作可能预示着我们所知道的世界末日 [附录中的第 4 项],“因为自主系统会决定不加区别地派遣无人机”,而其他人则预示着一种增强的人类生存的愿景,其中可持续性存在于生活的各个方面,所有个人的“繁重工作”都将被消除,世界和平将通过集体意识专注于所有正确的事情 [附录中的第 5 项]。中间派观点承认一种既不是乌托邦也不是反乌托邦的中间道路,其中所有事情都是可能的,但不一定会发生,人类可能在某些时候做对,但并非总是如此 [附录中的第 6 项]。AI/AS 领域的谨慎乐观主义者对机器(硬件或软件)的未来充满信心,但即使不期待,他们也要做好准备,因为在此过程中会遇到困难、失败,甚至侵犯人权 [附录中的第 7 项]。尽管围绕机器伦理的话题有很多讨论和猜测,从“机器没有认知能力,怎么会有伦理?”一直到“人工智能拥有灵魂意味着什么”,[附录中的第 8 项] 我们脑海中最重要的应该是“人工智能”这个词,它位于“智能”之前。我们不是带着拟人化的希望深入研究机器,好像它以某种方式获得了“生命之气”,而是将它理解为一个由人类精心设计和实现的实体,使用
广泛应用于自主驾驶中的基于深度学习的单眼深度估计(MDE)很容易受到对抗性攻击的影响。先前针对MDE模型的物理攻击依赖于2D广泛的补丁,因此它们仅影响MDE地图中的一个小型局部区域,但在各种观点下都失败了。为了解决这些限制,我们提出了3D深度傻瓜(3d 2傻瓜),这是对MDE模型的第一个基于3D纹理的对抗性攻击。3d 2傻瓜被专门优化,以生成3D对抗纹理对型号的车辆类型,并在恶劣天气条件(例如雨水和雾)中具有改善的鲁棒性。实验结果验证了我们3d 2傻瓜在各种情况下的出色性能,包括车辆,MDE Mod-els,天气状况和观点。现实世界中使用打印3D纹理的实验实验进一步表明,我们的3d 2傻瓜可能会导致超过10米的MDE误差。该代码可在https://github.com/gandolfczjh/3d2fool上找到。
摘要 - 质量自治有望彻底改变广泛的工程,服务和流动性行业。超密集的自主代理之间的协调复杂的沟通需要新的人工智能(AI)在第五代(5G)和第六代(6G)移动网络中实现无线通信服务的管弦乐队。在特定的安全和任务关键任务中,合法需要透明的AI决策过程,以及一系列人类最终用户(消费者,工程师,法律)的量化质量质量质量(QOT)指标。我们概述了6G的值得信赖的自主权的概念,包括基本要素,例如可解释的AI(XAI)如何产生信任的定性和定量方式。我们还提供了与无线电资源管理和相关的关键绩效指标(KPI)集成的XAI测试协议。提出的研究方向将使研究人员能够开始测试现有的AI优化算法,并开发新的算法,认为应该从设计到测试阶段内置信任和透明度。
摘要本研究研究了在郊区接受共享自主班车(SASS)的接受。模型通过对SASS的信任和技术乐观的信任进行了上下文变量的模型。我们检查了使用Sass而没有管家的意图和社会疏远的重要性。数据分别在2020-2021涉及922和608名参与者的飞行员的开头和结束时收集数据,在SAE级3级运行。的发现表明,信任和技术乐观主义显着影响使用SASS的意愿,尽管上下文变量显示出最小的影响。老年人和女性表现出较低的信任和乐观,减少了他们的使用意图。这两个小组还认为,在骑行时保持社交距离更为重要。研究表明,未来的飞行员应避免使用未成熟技术并满足特定群体的社会需求的负面影响。
我们的分析表明,自治不是唯一的目标,而是与绿色船的发展协同作用。对这两个概念的投资都会带来总体的财务收益,从而为船东创造了积极的业务案例。好处包括由于船员分配和新的船舶设计的缺席/减少而导致的货物容量增加。的确,与改造现有船只相比,新的船设计有可能更有效地解锁该协同作用。共同可以增强运输系统的安全性和弹性,并通过更好的任务管理和控制来减少排放。它可以有助于改善海员的工作条件,并最终