当前用于自动驾驶计算机视觉的深层神经网络(DNNS)通常在仅涉及单一类型的数据和urban场景的特定数据集上进行培训。因此,这些模型努力使新物体,噪音,夜间条件和各种情况,这对于安全至关重要的应用至关重要。尽管持续不断努力增强计算机视觉DNN的弹性,但进展一直缓慢,部分原因是缺乏具有多种模式的基准。我们介绍了一个名为Infraparis的新颖和多功能数据集,该数据集支持三种模式的多个任务:RGB,DEPTH和INDRARED。我们评估了各种最先进的基线技术,涵盖了语义分割,对象检测和深度估计的任务。更多可视化和
以明确价格的市场可用的能源称为商业能源。电力,汽油,柴油,天然气等次要可用能源形式对于商业活动至关重要,并被归类为商业能源。该国的经济取决于其将自然原始能源转化为商业能源的能力。
虽然行为克隆最近已成为自主驾驶的非常成功的范式,但Humans很少学会通过单独的模仿或行为克隆来执行复杂的任务,例如驱动或行为。相比之下,人类的学习通常涉及在整个交互式学习过程中的其他详细指导,即通常通过语言的反馈提供详细的信息,以详细信息,以进行审判的哪一部分进行,不正确或次要地进行。以这种观察的启发,我们引入了一个有效的基于反馈的框架,用于改善基于行为克隆的传感驱动剂培训。我们的关键见解是利用大语模型(LLM)的重新进步,以提供有关驾驶预测失败背后的理由的纠正良好的反馈。更重要的是,我们引入的网络体系结构是有效的,是第一个基于LLM的驾驶模型的第一个感觉运动端到端培训和评估。最终的代理在Nuscenes上的开环评估中实现了最新的性能,在准确性和碰撞率上的表现优于先前的最新时间超过8.1%和57.1%。在卡拉(Carla)中,我们的基于相机的代理在以前的基于激光雷达的AP摄入率上提高了16.6%的驾驶得分。
实习飞行软件、计算机视觉和人工智能瑞士苏黎世公司:Daedalean 是一家总部位于苏黎世的初创公司,由前谷歌和 SpaceX 工程师创立,他们希望在未来十年内彻底改变城市航空旅行。我们结合计算机视觉、深度学习和机器人技术,为飞机开发最高级别的自主性(5 级),特别是您可能在媒体上看到的电动垂直起降飞机。如果您加入我们的实习,您将有机会与经验丰富的工程师一起工作,他们来自 CERN、NVIDIA、伦敦帝国理工学院或……自治系统实验室本身。您将构建塑造我们未来的尖端技术。最重要的是,我们还提供在瑞士阿尔卑斯山试飞期间加入我们飞行员的机会。项目:不同团队提供机会。我们想更多地了解您,以及如何让您的实习成为双方宝贵的经历。告诉我们你一直在做什么,以及你想在我们的团队中从事什么工作。它与深度学习有关吗?状态估计?运动规划?计算机视觉?或者别的什么?向我们展示你的热情所在。如果我们可以在你想从事的领域提供指导和有趣的机会,我们将一起敲定细节。资格: 强大的动手 C++ 证明解决问题的能力 如何申请: 将您的简历/履历发送至 careers@daedalean.ai 。请告诉我们一些关于您自己的信息,为什么您认为自己适合我们以及为什么我们适合您。
● 专注于使用高有效载荷无人机 - ULTRA 进行空运货物 ● 超视距操作 (BVLOS) ● ULTRA 无人机平台第三次迭代 - 内部开发高可靠性航空电子系统 ● 在英国拥有丰富的运营经验,并与民航局建立了安全案例 ● 获得美国联邦航空局豁免,可以在贾斯珀县以外运营 ● 在印度和英国建立制造合资企业 ● 与英国国防部签订飞机和培训合同 ● 目前在乌克兰用于供应交付 ● 用于南极气象研究 ● 开始与世界粮食计划署在南部非洲合作提供援助
[草稿] Joseph B. Lyons,Kerianne Hobbs,Steve“ Cap” Rogers,Scott H. Clouse,“负责(使用)AI的负责人”,了解人类在社会技术生态系统中负责任地部署人类在智能技术中的作用[在草案中] Kerianne Hobbs,Bernard Li,“航空航天控制中的人类AI团队的安全,信任和道德考虑”,AIAA Scitech,2024年1月8日至124日,佛罗里达州奥兰多。
摘要关于实验方法的辩论,其作用,限制以及其可能的应用程序最近在自主机器人技术中引起了人们的关注。,如果从一方面,诸如可重复性和重复性的经典实验原理,它是发展该研究领域良好实验实践的灵感,另一方面,一些最新的分析证明了严格的实验方法尚未完全是该社区研究习惯的全部。在本文中,为了给出一部分自主机器人技术中当前的体验实践的理由,这些实践在传统的受控实验概念下无法令人满意地容纳,我们将不再进行探索实验。在这种情况下进行的探索性实验应作为在没有适当理论或理论背景的情况下进行的一种调查形式,在这种情况下,从一开始就无法完全管理对实验因素的控制。我们表明,这一概念源于(并得到)对大量论文样本中报道的实验活动的分析,这些论文已在两个最大,最重要的机器人研究会议上获得了奖励。
将车站作为艾登的待机点,期望精确着陆和起飞。体验快速部署和电池交换,从长时间的停机时间延迟了。车站的心脏是机器人手臂。它不仅可以在降落和起飞过程中充当稳定器,而且还可以执行闪电般的电池互换。
自主驾驶是一项复杂而具有挑战性的任务,旨在通过场景和推理来实现安全的运动计划。最近,通过增强的场景理解,几个关键问题,包括缺乏推理,低概括性能和长尾场景,但仍需要戴着几个关键问题,但仍需要进行一些关键问题。在本文中,我们提出了VLP,这是一个新颖的视力 - 语言规划框架,利用语言模式来弥合语言理解与自动驾驶之间的差距。VLP通过加强源内存基础和自动驾驶汽车的上下文理解来增强自主驾驶系统。vlp通过与先前的最佳方法相比,分别在平均L2错误和碰撞率方面,分别在平均L2错误和碰撞率方面实现了35.9%和60.5%的端到端规划表演。此外,在面对新的城市环境时,VLP在挑战性的长尾方案和强大的概括能力方面表现出改善的性能。
● 每年,许多房屋、企业和建筑物因野火而被摧毁,生命损失惨重,破坏不堪设想。● 这些火灾破坏力极大,往往需要多年时间才能恢复。● 消防部门和美国农业部林务局建议将植被修剪至较低高度,创造可防御空间。这样,可燃物和房屋之间就会形成一道屏障,通过清除潜在的火源来防止野火蔓延。● 由于身体限制和责任,并非每个人都有时间修剪大片草坪,也无法或不愿花费数千美元来支付修剪草坪的费用。● 我们社区和国家的居民都居住在农村地区,拥有大片土地。即使是居住在住宅区的人,周围仍然被需要维护的植被所包围,以帮助解决这个全球性问题。