•ubuntu(linux)系统的一些经验•一些具有机器人操作系统(ROS/ROS2)的经验•知识是面向对象的编程语言(例如,python,C ++,bash脚本)将是有利的•自我指导且能够在不进行监督的情况下进行,并且有能力进行监督•充满活力和新的项目•愿意与书面沟通•愿意•dival distal•dival dival dival dival dival dival divalsmot地
自主驾驶代表了创新的前沿,具有深刻地重塑运输和流动性的潜力。具有彻底改变运输系统,增强安全性和重新构想城市景观的能力,其重要性不能被夸大。同时,随着全球人口增长和城市化的加速,对高效,可持续和聪明的流动解决方案的需求变得越来越紧迫。自主驾驶为这些挑战提供了令人信服的解决方案,利用了诸如人工智能,传感器融合和连接性等尖端技术,使车辆能够自主行驶,智能地进行沟通并与环境无缝互动。在自动驾驶上的物联网上的ACM交易的本期特刊是一个信标,阐明了该领域的跨学科本质和意义,同时对其广泛的含义提供了深入的见解。涵盖了从计算平台和模拟器的体系结构到感知算法和基础设施集成的多学科主题,该问题采用了面向应用程序的方法,可满足各种各样的研究人员,工程师,策略制造商和行业专业人员。
上下文:自主驾驶系统(AD)的出现标志着朝着智能运输的重大转变,对公共安全和交通效率产生了影响。尽管这些系统集成了各种技术并提供了许多好处,但它们的安全至关重要,因为脆弱性可能会对安全和信任产生严重的后果。目的:本研究旨在使用静态代码分析工具CodeQL系统地研究突出的开源ADS项目代码库中的潜在安全弱点。目标是确定共同的漏洞,它们在版本上的分布和持久性,以增强广告的安全性。方法:我们根据其高github恒星计数和4级自动驾驶功能选择了三个代表性的开源广告项目,即Autoware,Airsim和Apollo。使用CodeQl,我们分析了这些项目的多个版本以识别漏洞,重点是CWE类别,例如CWE-190(Integer Overflow或Wraparound)和CWE-20(输入验证不正确)。我们还通过软件版本跟踪了这些漏洞的生命周期。这种方法使我们能够系统地分析项目中的漏洞,这在以前的广告研究中尚未进行广泛探讨。结果:我们的分析表明,在选定的ADS项目中,特定的CWE类别,尤其是CWE-190(59.6%)和CWE-20(16.1%)。这些漏洞通常持续六个月以上,涵盖了多个版本的迭代。结论:广告中的这些安全问题仍有待解决。经验评估显示了这些漏洞的严重性与它们对ADS性能的切实影响之间的直接联系。我们的发现突出了将静态代码分析集成到ADS开发中以检测和减轻共同漏洞的必要性。同时,主动保护策略(例如定期更新第三方库)对于提高ADS安全至关重要。和监管机构在促进静态代码分析工具和设定行业安全标准方面可以发挥关键作用。
上下文:自主驾驶系统(AD)的出现标志着朝着智能运输的重大转变,对公共安全和交通效率产生了影响。尽管这些系统集成了各种技术并提供了许多好处,但它们的安全至关重要,因为脆弱性可能会对安全和信任产生严重的后果。目的:本研究旨在使用静态代码分析工具CodeQL系统地研究突出的开源ADS项目代码库中的潜在安全弱点。目标是确定共同的漏洞,它们在版本上的分布和持久性,以增强广告的安全性。方法:我们根据其高github恒星计数和4级自动驾驶功能选择了三个代表性的开源广告项目,即Autoware,Airsim和Apollo。使用CodeQl,我们分析了这些项目的多个版本以识别漏洞,重点是CWE类别,例如CWE-190(Integer Overflow或Wraparound)和CWE-20(输入验证不正确)。我们还通过软件版本跟踪了这些漏洞的生命周期。这种方法使我们能够系统地分析项目中的漏洞,这在以前的广告研究中尚未进行广泛探讨。结果:我们的分析表明,在选定的ADS项目中,特定的CWE类别,尤其是CWE-190(59.6%)和CWE-20(16.1%)。这些漏洞通常持续六个月以上,涵盖了多个版本的迭代。结论:广告中的这些安全问题仍有待解决。经验评估显示了这些漏洞的严重性与它们对ADS性能的切实影响之间的直接联系。我们的发现突出了将静态代码分析集成到ADS开发中以检测和减轻共同漏洞的必要性。同时,主动保护策略(例如定期更新第三方库)对于提高ADS安全至关重要。和监管机构在促进静态代码分析工具和设定行业安全标准方面可以发挥关键作用。
摘要 - 隐式表示,例如神经辐射场(NERF),可以通过连续的神经功能在3D场景中绘制颜色,密度和语义。但是,这些模型通常需要手动和仔细的人类数据收集进行培训。本文解决了自主nerf构造的主动探索问题。我们研究代理如何学会有效地探索未知的3D环境,以便在自主性过程中收集的数据能够学习高质量的神经隐式图表示。在四个与机器人相关的下游任务上评估了所学代表的质量:经典的观点渲染,地图重建,计划和姿势改进。我们比较了不同的探索策略的影响,包括基于前沿的基于基础和学习的方法(端到端和模块化)以及针对此问题量身定制的不同奖励功能。经验结果表明,可以使用在看不见的环境中使用一集经验对积极收集的数据进行培训,并且Autonerf是一种经过加固学习训练的模块化勘探策略,使得获得了高质量的NERF,以获得高质量的NERF,以实现经过考虑的下游机器人任务。最后,我们证明,使用Autonerf可以将代理部署到以前未知的场景中,然后通过通过勘探,重建和策略填充的循环来适应场景来自动改善其导航性能。
摘要 - 近年来,自主驾驶技术的兴起强调了可靠软件在确保安全和性能方面的重要性。本文提出了一种使用多模式学习的自动驾驶软件系统中即时软件缺陷预测(JIT-SDP)的新方法。提出的模型利用了多模式变压器,其中预训练的变压器和组合模块与软件系统数据集的多个数据模式相结合,例如代码功能,更改指标和上下文信息。适应多模式学习的关键点是利用不同数据模式(例如文本,数值和分类)之间的注意机制。在组合模块中,在文本数据和包含分类数据和数值数据的表格数据和表格特征上的输出组合在一起,以使用完全连接的层产生预测。对从GitHub存储库(Apollo,Carla和Donkeycar)收集的三个开源自动驾驶系统软件项目进行的实验表明,拟议的方法显着超过了有关评估指标的最先进的深度学习和机器学习模型。我们的发现突出了多模式学习的潜力,以通过改进的缺陷预测来增强自主驾驶软件的可靠性和安全性。
人类是自动特工,他们通过设定和追求自己的目标来学习。但是,指导人类目标选择的确切机制尚不清楚。学习进度通常以观察到的性能变化而衡量,可以为人类和人造药物的目标选择提供宝贵的信号。我们假设人类对目标的选择也可能是由潜在的学习进步驱动的,那么人类也可以通过了解其行动和环境来估算这些进步,即使没有立即发生绩效的改变。为了检验这一假设,我们设计了一项分层增强学习任务,其中人类参与者(n = 175)反复选择自己的目标并学习了目标条件政策。我们的行为和计算建模结果证实了潜在学习进度对目标选择和揭示个体间差异的影响,这部分是通过识别环境层次结构的介导的。通过研究潜在学习进度在人类目标选择中的作用,我们为更有效和个性化的学习经历以及更类似人类的自动机器的发展铺平了道路。
可扩展,安全和适应AI,虚拟化和实时数据处理轴向AX300是一个高度可配置的边缘计算平台,旨在处理IT/OT环境中的复杂工作负载。其灵活的体系结构支持AI,机器学习,数据分析和虚拟化,使其非常适合工业自动化,智能城市和关键基础架构。具有高级安全功能,包括TPM和加密,可确保数据完整性和保护。轴向AX300提供远程管理功能,可从任何地方进行无缝部署,监视和更新。其可扩展设计支持大型语言模型推断和边缘的实时数据处理。为在恶劣环境中的可靠性中构建,轴向AX300提供了低延迟,有效的计算,桥接云和边缘智能为下一代AI驱动的决策和自主系统提供动力。
量子热力学的资源理论一直是一个非常成功的理论,并且在社区中产生了很多后续工作。,它要求在系统,浴室和催化剂上实施能源的统一操作,作为其范式的一部分。到目前为止,这种统一的操作被认为是该理论中的“免费”资源。但是,这只是一个不必要过程的理想化。在这里,我们包括一个额外的辅助控制系统,该系统可以通过打开或关闭交互来自主实现统一。”但是,由于统一的实施,控制系统将不可避免地会降低。我们得出了控制装置质量的条件,因此热力学定律不会通过使用良好的量子时钟来改变并证明量子力学定律允许反应足够小,从而可以满足这些条件。我们将非理想的控制纳入资源框架也会引起有趣的前景,在考虑理想化的控制时,这是不存在的。除其他外,第三定律的出现而无需假设光锥。我们的结果和框架将自动量热机器的自动量量子资源理论统一,并为所有量子加工设备与完全自主机统一的所有量子处理设备奠定了基础。
可以在列出的交易所以其市场价格以其市场价格购买或出售ARK ETF的股票。ARK ETF的股票的市场价格可能在ARK ETF的净资产价值(“ NAV”)上或以上或低于ARK ETF的股票上,并且会随着NAV的变化以及股票市场的供求而波动。在市场上销售期间,ARK ETF股票的市场价格可能与其NAV有很大差异。只有在授权参与者的创建单元中,ARK ETF的股票只能直接与NAV的ARK ETF兑换。不能保证ARK ETF股票的积极交易市场将开发或维护,或者其上市将继续或保持不变。在交易所购买或出售ARK ETF股票可能需要支付经纪委员会,并且频繁交易可能会产生经纪成本,从而大大损害了投资回报。未保险 - 没有银行担保 - 可能会损失价值