微生物在其生态壁ches和自然宿主中受到各种物理,化学和生物学信号的多样性(Matilla等,2022; Webster等,2022)。这些信号的感知以及最佳响应的产生对于在高度竞争和挑战环境中的微生物生存至关重要。信号感知是通过广泛的信号转导系统(Gumerov等,2020; Matilla等,2022)进行的,这些调节性级联反应的基因可以占细菌总基因组的10%以上(Galperin,2018; Ghumerov等,2018; Ghumerov等,2020年)。值得注意的是,环境细菌包含特别高的信号转导系统(Alexandre等,2004; Galperin,2018; Gumerov等,2020),很可能
谷物是人类为谷物种植的一群草。是从这些谷物谷物中获得的大多数人。这些晶粒的产生是形成草的独特芽结构的分层生殖结构的发展的结果。由于是空间的复杂,草芽发育的配位受到基因和信号网络(包括关键的植物激素生长素)的紧密控制。激素操纵已被确定为提高谷物作物产量的潜在潜在方法,因此最终是全球粮食安全。最近将生长素研究的大量研究从模型植物转化为谷物农作物物种的工作揭示了生长素生物合成,运输和信号传导对草芽结构发展的贡献。本综述讨论了这个仍在培养的知识基础,并研究了生长素生物学的变化可能是关键草物种之间射击建筑差异的差异的可能性,或者可以支持未来的谷物作物的选择性繁殖。
众所周知,植物激素的生长素和细胞分裂素是植物生长和发育的关键调节剂,它们是在芽和根,幼叶,种子,种子和水果的顶端分生组织中合成的[1-4]。它们对种子发芽,芽的形成和生长以及植物阶段的植物的不定和侧根表现出刺激的影响[1-4]。植物生物学家的大量关注致力于筛选合成起源的生长素和细胞分裂素的新有效类似物,以改善农业的生长并提高农作物的生产率。近年来,已经创建了新的生长素和细胞分裂素的新合成类似物,例如NAA(1-萘乙酸),2,4-D(2,4-二氯苯氧基酸),3,4-D(3,4-二氯苯甲乙酸),2,4,4,4,5-T
植物水关系:水对植物寿命,扩散,渗透,质解,吸收,沟渠,蒸腾,气孔,气孔及其开放和关闭机制的重要性。Micro & macro nutrients: criteria for identification of essentiality of nutrients, roles and deficiency systems of nutrients, mechanism of uptake of nutrients, mechanism of food transport Growth and development: Definitions, phases of growth, growth curve, growth hormones(auxins, gibberlins, cytokinins, abscisic acid, ethylene) Unit-IV
硝基固醇是一种微生物生物刺激剂,含有活性形式(1 x 10月CFU)的氮固定细菌群落,具有穿透植物叶子并产生菌落的能力。这些细菌通过不断,始终如一地以直接同化的形式从大气中提供氮刺激植物的生长,并产生植物(Auxins等)),可确保快速,剧烈和平衡的生长以及收获的定量和定性特征的令人印象深刻的改善,同时降低氮肥,这反复证明是一项长期的实验性研究,在不同的作物和多样化的土壤和多样性的土壤中。
光合作用:历史背景;光合作用的位置;光合色素;光合作用机理 - 光依赖阶段(光反应),光系统;循环和非环状光磷酸化;光独立(生物合成)阶段 - 加尔文(C3)循环和孵化与松弛(C4)循环;影响光合作用的因素;光呼吸。植物生长和发育:植物生长的特征;生长,增长率,生长曲线的阶段;生长条件;分化,去分化和重新分化。植物细胞中发育过程的顺序;植物生长调节剂;生长素,gibberellins,cytokinins,乙烯和脱支酸的发现和生理作用。
c。当愈伤组织或外植体暴露于细胞分裂素的正确组合,有时是低的生长素浓度时,射击诱导开始形成。芽可能像植物或愈伤组织上的小芽一样出现。在此阶段,植物细胞开始分化为芽分生组织,这些分生组织成长为功能性芽。d。射击伸长一旦形成不定的芽,就需要将其拉长并发展成可行的植物。这通常涉及将新形成的芽转移到低细胞分裂素和高营养含量的培养基中。e。芽伸长后生根,将植物体转移到可能含有生长素的生根培养基中,以鼓励根部形成。在将植物性转移到土壤或适应外部条件之前,必须建立根。
抽象的生长素是植物激素,它们在几乎所有的生长和发育过程中起关键作用,例如细胞分裂,伸长,分化和环境反应。然而,生物合成途径和调节机制尚不清楚。通过IPYA从L- tryptophan(TRP)的吲哚-3-丙酸(IPYA)途径是天然生长素吲哚-3-乙酸(IAA)的主要生物合成途径。在这条途径中,IAA是从TRP通过两种酶促反应进行生物合成的:氨基转移酶(拟南芥的色氨酸氨基转移酶1 [TAA1]/ Thappophan氨基转移酶相关[TARS])和YUCCAS(YUCCAS(YUCS)(YUCS)(YUCS)(YUCCS),这是flavaissen-centen-congen-connecen。我们开发了TAA1/TAR和YUC的抑制剂,并使用生物合成抑制剂作为化学探针分析了IPYA途径的生理功能。本文还描述了使用新型的IPYA模拟化合物,在生长素生物合成中两步酶促反应的调节机制。
The rational use of biologically active substances or plant growth stimulants from natural materials like seaweed is one of the most promising trends in agriculture, as seaweed is considered a safe and sustainable bio stimulant for improving plant growth, particularly under abiotic stress due to its high content of Cytokinin's, auxins, gibberellins, amino acids, phytohormones, Osmo protectants, mineral nutrients, and抗菌化合物。当前的工作探讨了海藻提取物对不同作物的影响,它们在植物中起的功能作用以及海藻提取物在综合作物管理系统中的潜在价值对可持续作物生产。各种元素会影响农业中使用的海藻提取物的有效性,例如海藻,制造方法和浓度,而应用技术被认为是海藻提取物在改善植物生长中有效性的决定因素。海藻提取物以两种基本方式合成:通过物理技术和化学方法。使用碱提取是最商业的方法,在维持生物活性成分方面非常有效。许多报告已经证实了海藻提取物在改善植物生长方面的疗效及其在改善种子发芽,改善根系的生长,提高幼苗生存率,提高幼苗生长和在非生物胁迫下提高植物的生长和生产力,并增强植物对病原体的耐药性。
通讯电子邮件:bahauddeen.salisu@umyu.edu.ng引言化学农药和肥料对农业产量至关重要,但是它们对环境,植物,动物和人类健康的有害影响已导致对环保的植物保护植物保护(Patel等。,2014年)。生物肥料由从植物根或土壤中提取的活微生物组成(Aggani,2013年),它在化学肥料的替代品中广受欢迎。它们通过增加氮的可用性来降低农作物的生产成本,提高生长和产量,并促进生长促进性物质(如生长素,细胞分裂素和吉伯林林)的生产(Bhattacharjee和Dey,2014年)。含有有益微生物的生物肥料,而不是合成化学物质,而是通过提供必需的养分来改善植物的生长,同时保持环境健康和土壤生产率(Singh等,2011; Verma等,2017)。他们