1简介自主控制算法的设计是一项艰巨的任务,因为它传统上需要大量的现实测试,这既耗时又昂贵。仿真是自治设计的宝贵工具,例如,以时间和成本效益的方式协助参数调整,算法测试。此外,在机器学习范围(ML)的范围内,由于其生成训练数据的能力,模拟具有吸引力。在此,我们证明了模拟引擎[1]和自治研究床(ART)[2]平台来促进自治政策制定过程,以避免ML控制政策。这项工作建立了以前的贡献,这些贡献证明了控制策略的各种多速路径的可传递性[3,4]。这项研究证明了通过机器学习(ML)避免障碍物的额外能力。ML已通过收集的数据进行了培训,而人类驾驶员则在模拟器中驱动。
摘要 - 智能机器人技术在维护,维修和大修(MRO)机库操作方面具有重要意义,其中移动机器人可以在其中导航复杂而动态的环境,以进行飞机视觉检查。飞机机库通常忙碌而变化,形状和尺寸各不相同,呈现出严格的障碍物和条件,可能导致潜在的碰撞和安全危害。这使得障碍物检测和避免对安全有效的机器人导航任务至关重要。常规方法已在计算问题上应用,而基于学习的方法的检测准确性受到限制。本文提出了一个基于视觉的导航模型,该模型将预训练的Yolov5对象检测模型集成到机器人操作系统(ROS)导航堆栈中,以优化复杂环境中的障碍物检测和避免。该实验在ROS-Gazebo模拟和Turtlebot3 Waffle-Pi机器人平台中进行了验证和评估。结果表明,机器人可以越来越多地检测并避免障碍物,而无需碰撞,同时通过不同的检查点导航到目标位置。关键字 - 自主导航,对象检测,避免障碍物,移动机器人,深度学习
摘要 - 强化学习(RL)已成为复杂环境中自动决策的有效范式。但是,在RL中,事件驱动的决策过程的集成仍然是一个挑战。本文介绍了一种新颖的体系结构,将离散事件监督(DES)模型与标准RL框架相结合,以创建混合决策系统。我们的模型利用了DES的能力来管理基于事件的动态,而RL代理对连续状态和行动的适应性,从而促进了以连续和离散事件为特征的系统中更强大,更灵活的控制策略。DES模型与RL代理一起运行,通过基于事件的见解来增强策略的性能,而环境的状态过渡则由机械模型约束。我们通过模拟证明了方法的功效,这些模拟显示出比传统RL实现的性能指标的改进。我们的结果表明,这种综合方法对从工业自动化到智能交通系统的应用有望在离散事件处理至关重要的情况下。索引术语 - 预言学习,离散事件超级访问控制,混合系统,自主决策,事件驱动的动态
这项研究涉及无人直升机的控制,强调形成控制,目标跟踪,避免障碍和连续性维护。该研究采用终端滑动模式控制(TSMC)来调节直升机的位置和态度,而通用的预测控制(GPC)策略则用于通过领导者追随者的方法来形成控制。使用人工电位(APF)方法实现避免障碍物。仿真结果表明,在六个不同的任务中,快速收敛时间不到三秒钟,这表明直升机在保持静态障碍和动态障碍的同时保持其形成的能力。最初的三个任务涉及在三角形形成中组织的三架直升机,成功地避免了障碍物并以低于1%的错误率保持连续性。随后的三个任务,涉及五架五角形配置的五架直升机,类似地说明了有效的导航和动态目标跟踪。值得注意的是,领导直升机始终跟踪静态和动态目标,以确保形成的完整性。这项研究通过探索多代理直升机操作和障碍物遍历的复杂性来促进该领域,从而强调了在动态场景中保持连通性和形成的关键重要性。这些发现强调了拟议的控制策略的有效性,为包括军事和民用领域在内的各个部门的未来应用提供了宝贵的见解。
文章历史:在过去的十年中,已经开发了各种基于速度障碍的方法,以避免动态环境中的碰撞。但是,这些方法通常仅限于处理几个障碍,连续的相遇或缺乏安全地形的安全保证。本文提出了使用速度障碍法的自适应碰撞避免策略,旨在使自主火星流浪者能够安全地驾驶动态和不确定的地形,同时避免多个障碍。该策略构建了自适应速度锥体,考虑了动态障碍和地形特征,从而确保了连续的安全性,同时将漫游者引导到其航路点。我们在模拟的MARS探索方案中实施了策略,代表了具有挑战性的多OSTACLAS任务。模拟结果表明,我们的方法通过增加安全距离来增强性能,使其非常适合自主行星探索,在这种情况下,避免碰撞对于任务成功至关重要。
植物释放在土壤原代和继发代谢产物中,这些代谢物通过其营养作用或抗菌活性来塑造菌群的结构。植物防御微生物还包括物理屏障,例如表皮,这些障碍物可以防止被侵略者无法造成的侵略者的感染来破坏它们。不同的感知系统允许植物检测入侵[6]。在其中,植物膜模式识别受体(PRR)有感觉保守的微生物相关分子模式(MAMP)或通常是细胞外的内源性植物分子。对MAMP的敏感性最近被提出是通过伤害引起的[7]。此外,胞质核苷酸结合亮氨酸重复(NLR)受体,感知的植物细胞内病原体效应子。这种效应子识别触发了与局部受控细胞死亡有关的强烈防御反应的发展,这些反应可能导致效应子触发免疫力(ETI)。植物细胞对病原体的感知会导致产生活性氧(ROS),抗菌化合物的合成,防御相关基因的转录和防御激素的产生。后者将远离感知部位的植物防御反应,以激活诱导的全身电阻(ISR)[8]。通常,接触越亲密,国防反应就越强。
TCP通过将数据分割成小于或等于最大段大小(MSS)的数据包来避免碎片化。对于每个传输段,IP和TCP标头的大小是已知的,并且可以选择IP数据包大小以将其保持在估计的MTU和MSS中。这利用了TCP包装过程的弹性,具体取决于排队数据适合下一个段的弹性。相比之下,UDP上的DNS几乎没有数据报弹性,并且缺乏对IP标头和选项尺寸的见解,因此我们必须对可用的UDP有效负载空间进行更保守的估算。
TAC设置为2020年。实际关闭时间(RTC)和实时报告(RTR)将有助于管理车队的配额问题。该计划主要集中于空间措施,以避免捕获丰富的鳕鱼。尽管很难量化空间措施,但我们先前使用RTC(尤其是在COD恢复计划中)的空间措施的经验表明,这种措施对COD死亡率和生物量有可见的影响。1。产卵封闭北海北海 - 英国与欧盟成员国和挪威一起工作,建立了十个产卵的关闭,该关闭在2020年1月1日生效并留在原地。北海南部的关闭 - 在英国水域的部分中,有两个产卵封闭。其他站点可以被视为在英国水域中关闭季节性产卵的候选者,并且确定的任何站点都将在本计划中建立并进行更新。1.1产卵方案的功能
移动机器人在行业和各种服务领域的广泛应用中拥有巨大的潜力。因此,广泛的研究工作致力于解决缺陷并提高其绩效。在机器人技术中的关键挑战中是避免障碍物,这使机器人能够沿着计划的路径遇到的意外物体导航。已经提出了许多方法和算法,以防止机器人和检测到的障碍之间的碰撞。这些方法通常依赖于在每个步骤都具有精确了解机器人位置的关键假设。本文在室内环境中介绍了一种新颖的方法,用于避免障碍物,利用部分已知空间和A*算法的占用网格图。所提出的方法通过有关机器人状态的不精确信息解决了方案。最初,使用人工神经网络将初步的占用网格图改进并转化为增强的图。随后,将A*算法应用于修改的地图。此外,开发了一种算法来指导机器人从起点到目标端点。遇到新出现的障碍时,机器人在避免障碍的同时,动态地适应了达到目标的道路。在三种不同的情况下,通过对两轮机器人的模拟来验证所提出的方法的功效。结果证明了该方法在室内环境中有效浏览机器人的能力,即使具有不精确的状态信息。该算法确保机器人与障碍物保持安全距离,从而展示其实用应用的潜力。
测试实验室的责任是确保任何要求的更改满足欧元NCAP的要求。如果实验室和制造商之间存在分歧,则应立即告知欧元NCAP秘书处以通过最终判决。实验室工作人员怀疑制造商干扰了任何设置,应警告制造商的代表,他们不允许自己这样做。还应告知他们,如果发生另一次事件,他们将被要求离开测试地点。