电子邮件:roberto.moretti@mib.infn.it摘要 - Quantum Sensing是一个快速扩展的研究领域,在基本物理实验中找到了其应用之一,例如寻找弱EM耦合的暗物质(DM)候选候选者,NAINELELENEXION和DALK PHOTCON。超导Qubits和制造技术的最新发展对量子传感的推动进展产生了重大贡献,这要归功于它们对AC领域的高灵敏度,并且有可能基于量子非demolition(QND)[1]和直接检测来利用基于量子非demolition(QND)的检测方案。QND包括在量子系统和被困在空腔中的光子之间建立一个纠缠状态,从而使我们能够在不吸收的情况下推断光子的存在,从而实现多个测量值,从而指数抑制了深色计数速率。相反,直接检测方案依赖于共振,低功率,暗物质诱导的交流场,其量子态缓慢地旋转速度状态,该量子态可以在高碳状态的thermons和fluxoniums中衡量。此贡献是INFN QUB-IT协作的一部分,该协作旨在通过量子超导设备来推进微波单光子检测。演示将说明QUB-IT状态以实现数百微秒连贯的时间和工程DM检测设置。这项工作研究了平面transmon量子芯片芯片的建模和设计优化,利用集结振荡器模型(LOM)[3]和能量参与率(EPR)[4] [4]来提取汉密尔顿参数。基于EPR的新型策略是为了增强通过有限元模拟估算两级系统(TLS)损失估算的准确性。还讨论了通过耦合的多Qubit系统提高DM敏感性的可能性,以及在国家标准技术研究所(NIST)制造的单量芯片(NIST)的表征以及模拟和测量的Qubit参数之间的彻底比较,例如弹性频率,Anharmormonity和Anharmormonity和Anharmonicity and coupling Lustertic lofter与读取结构。这项工作中提出的初步结果有望进一步增强量子传感平台的灵敏度和可靠性,这可能会超过当前光DM搜索实验的局限性。
B41.002:高 Q 值超导谐振器高电阻率硅晶片低温损耗角正切测量 B57.002:超导 Nb 薄膜中亚间隙准粒子散射和耗散 B57.008:Nb 超导射频腔的电磁响应 B57.010:用于高 Q 值谐振腔的高纯铌超导态氢化物的非平凡行为 B57.012:轴子搜索的可行性研究:Nb SRF 腔中的非线性研究 D37.002:基于三维微波腔的微波光量子转导 D39.013:带有级联低温固态热泵的量子阱子带简并制冷 D40.008:基准测试方八边形晶格 Kitaev 模型的 VQE D41.003:用于量子计算的 Nb 谐振器中氧化铌退火的原位透射电子显微镜研究 F36.005:识别超导量子比特系统中缺陷和界面处的退相干源 F36.006:使用双音光谱理解和减轻超导射频 (SRF) 腔中的损耗 F36.007:通过 HT 相界分析优化用于量子器件的 Nb 超导薄膜 F36.008:循环:超导量子比特的多机构表征 F36.010:铌射频腔的 Nb/空气界面的原子尺度研究 K29.002:超导量子材料与系统 (SQMS) – 新的 DOE 国家量子信息科学研究中心M41.009:可调谐 transmon 量子比特的长期能量弛豫动力学作为损耗计量工具 N27.006:超导量子材料与系统 (SQMS) 研究中心的量子信息科学生态系统工作 Q71.007:高磁场中的超导材料在高能物理量子传感中的应用 Q37.005:多模玻色子系统量子启发式的数值门合成 S38.003:基于微米级约瑟夫森结的约瑟夫森参量放大器的制造和特性 S72.009:探究低温真空烘烤对超导铌 3-D 谐振器光子寿命的作用 T00.106:铌硅化物纳米膜的稳定性、金属性和磁性 T00.119:不同 RRR 值的铌膜的特性低温 T72.005:单个纳米结处异质偶极场和电荷散射的太赫兹纳米成像 W40.006:量子芝诺效应对两能级系统的动态解耦 W34.013:3D SRF QPU 的潜在多模架构探索 Y34.008:高相干性 3D SRF 量子比特架构的进展 Y40.009:理解和减轻超导量子比特中 TLS 引起的高阶退相干
这个项目(IR#664 - Bridgewater Bess)规定在Nova Scotia Power Inc(NSPI)传输变电站99W-Bridgewater建立138 KV系统的互连,用于在Nova Scotia的Nova Scotia的50MW电池储能系统(BESS)。互连点(POI)在99W-Bridgewater变电站的NSPI的138kV总线B62上。指定的所有权变更点(PCO)位于138kV - 35.4kV变压器的138kV终端,服务于BESS设施。POI和PCO在附录B中提供的互连概述图中得到了进一步阐明。与此互连相关的工作范围将包括一个新的138KV断路器终端,即99W - Bridgewater变电站,新互连的收入计量以及对现有的保护和控制方案的修改,监管控制和控制方案,监督控制和数据获取(SCADA),以及在99W-BridgeWater Water的电信。互连客户的设施将包括138KV-34.5KV,36/48/60 MVA自动转换器和相关的电缆接口到拟议的Bess。BESS设施将包括34.5kV开关设备建筑物,包括34.5kV断路器,相关的保护和控制设备以及电缆接口以及用于变压器保护面板和通信设备的空间。提议的BESS在200MWH时的额定值为50MW,其初步设计由84(82)28MWH电池存储单元,32(32)逆变器和32(32)PADMOUNT变压器组成。没有与此互连关联的网络升级。详细的成本估算所有互连设施必须满足NSPI的传输系统互连要求(TSIR),版本1.1,日期为2021年2月25日,在NSPI OASIS网站上发布。需要保护和控制升级才能容纳Bess。将更换99W-Bridgewater的现有变电站远程终端单元(RTU),以适应增加的点计数。现有的控制面板将进行修改,以适应99W-Bridgewater变电站大楼中新的138 KV断路器的行程电路监视器和断路器警报。99W-B62总线保护面板和断路器备份面板将被修改以接受新的Breaker 99W-663。nspi将需要用于变压器保护面板和通信设备的BESS变电站控制大楼中的空间和不受限制的访问。将通过现有99W变电站大楼中的新的SEL-2240 Axion RTU提供监督控制。电信将由99W现有设施提供。根据NSPI规范,NSPI(传输提供商)将在99W-BridgeWater变电站上提供和安装收入计量所需的138kV电压和当前的变压器。完成互连工作所需的所有系统中断均应与NSP系统运营商进行高级计划和协调。构建所需传输提供商的互连设施的总估计成本为1,789,321美元。没有与此互连关联的网络升级。
我们很高兴提出问题号超导新闻论坛的第57卷,其中包括2024年9月在盐湖城庆祝的应用超导会议的23个新演讲,该奖项摘要在那里颁发了颁奖典礼,并宣布了Guy Deutscher。首先,包括来自ASC-24的四个全体会谈,对应于:Ezio Todesco博士,Kazumasa Iida博士,Alex Gurevich博士,Alex Gurevich博士和Kenneth Segall博士。我们提醒您,在ASC-24进行的所有全体会议的视频录制也将在ASC-24网站的某个阶段包括在内。我们包括与几个会议相对应的ASC-24的19次邀请演讲,我们希望能够增加未来SNF问题中受邀演讲的数量。首先,我们包括与普通大型会议相对应的三场演讲,六次对应于两个大型特殊会议的对话和两个对应于联席会议大规模材料的联席会议的演讲。前三个对应于Min Zhang博士,LoïcQuéval博士和Paolo Ferracin博士。特殊会议的人由:Ziad Melhem博士,Sastry Pamidi博士,Kathleen Amm博士,D。ScottHolmes博士和Mark Bird博士(超导全球联盟); Stuart Wimbush博士(融合公私合作伙伴关系); Brian Labombard博士和Sam Tippetts博士(联席会议:非绝缘的Rebco磁铁真的是自我保护的吗?)。第二,我们包括四个与材料会议相对应的演讲,一个来自普通会议,三个来自材料特别会议。第一个对应于Teresa Puig博士的演讲,其他三个对Mike Sumption博士,E。Hellstrom博士和Xavier Obradors博士(超导材料的挑战和机会)。第三,我们从普通电子会议中选择了两次演讲,并从电子特别会议上选择了两次演讲。前两个谈话对应于Naoki Takeuchi博士和Logan Howe博士。在特别会议上提出的那些人由:Yue Jiang博士和Elisabeth van Assadelft博士(用于轴突搜索的超导量子传感)。This SNF Issue also includes a list, and some images, of the Awardees recognized by IEEE – CSC at ASC-24 for: Continuous and significant contributions in the field of applied superconductivity (Large Scale and Materials), Sustained service to the applied superconductivity community, Fellow class, Van Duzer Award, Entrepreneurship award and Graduate Study Fellowships in applied superconductivity.最后,我们在“ Memoriam”部分,of.来自特拉维夫大学的Guy Deutscher。