摘要 . 首先将水杨醛与乙二胺以 1:2 的摩尔比缩合制备偶氮席夫碱配体 (L1),然后将制备的亚胺化合物 (S1) 与 2,5-二氯苯胺反应,合成了一种新的 Ni(II)、Pd(II) 和 Pt(II) 配合物,并用于制备含有金属离子 Ni(II)、Pd(II) 和 Pt(II) 的配合物。利用紫外可见光、红外和核磁共振、摩尔电导、元素分析和质谱研究了合成化合物的结构特征。元素分析结果表明 [M:L] 化学计量为 1:1。根据摩尔电导研究,制备的所有最终产品都不具有电解性质。根据光谱研究,Ni(II)、Pd(II) 和 Pt(II) 的配合物可能具有方平面几何形状。然后评估了 Pd(II)、Ni(II) 和 Pt(II) 配合物对不同类型的革兰氏阴性菌 [ 大肠杆菌 ( ATCC 25922 )] 和阳性菌 [ 金黄色葡萄球菌 ( ATCC 25923 )] 的抗菌活性,结果显示对这些细菌具有良好的显著性。通过研究的 PC3 细胞系对正常细胞 WRL-68 来检查钯配合物对前列腺恶性细胞的细胞毒性作用。将使用 MOE 软件研究这些配合物的目标微生物的分子对接。
这项研究采用简单的热液(HT)方法来合成五氧化钒(V 2 O 5)纳米材料。V 2 O 5的固有局限性,包括低量子效率和光敏度不足,限制了其增强光催化活性的潜力。该研究研究了通过退火通过退火研究甲基橙(MO)和刚果红(CR)染料的光降解。X射线衍射(XRD)和拉曼光谱学证实了V 2 O 5的组成,而SEM用于观察封装的纳米颗粒的形态。使用紫外线(UV)光谱法估计V 2 O 5的带隙在2.51和2.73 eV之间。此外,分析了亚甲基蓝(MB)染料的光降解,钙化的V2O5在90分钟内实现了MB的76%降解效率。对于CR和MO,在20 mg/L染料浓度下,降解率在200分钟内达到97.91%和86%。MB降解的反应速率常数确定为8.19 x10⁻⁵s⁻。总体而言,HT合成的V 2 O 5由于其可见光吸光度提高而表现出增强的光催化活性,从而促进了偶氮染料的更有效的光降解。
这项研究的目的是检查被用作五种潜在危险的偶氮染色的吸附剂的可能性,以从水溶液中取出。通过实验和计算DFT以及蒙特卡洛方法研究了AZO-DYES去除的GO的吸附特征。实验研究包括吸附剂剂量,接触时间和初始浓度的影响,而计算研究涉及DFT和Monte Carlo(MC)模拟。通过探索了通过搜索最低的可能性吸附复合物来通过MC预测,通过DFT研究进行了地理,电子和热力学参数的地理,电子和热力学参数。通过Langmuir模型评估实验数据,以描述平衡等温线。均衡数据非常适合Langmuir模型。热力学参数,即自由能的变化,焓变和熵变化表明,通过在GO分子筛子表面上吸附来去除偶氮-DYES是自发的。发现该过程的性质是涉及非共价相互作用的物理吸附。这项研究揭示了GO可以用作有效的吸附材料,用于从水溶液中吸附偶氮-DYES。
本研究制备了一些偶氮苯酚氯化化合物,并根据 ASTM (美国材料试验协会) 研究了它们作为商用聚氨酯阻燃剂的性能,其中使用的比例与偶氮苯酚氯化化合物不同。通过增加氯原子,将偶氮苯酚氯化化合物开发为阻燃材料。制备了具有不同数量和取代氯原子位置的偶氮苯酚氯化化合物。傅里叶变换红外光谱 (FT-IR) 预测了偶氮苯酚氯化化合物的化学结构。此外,通过增加氯原子的数量和增加所添加的偶氮苯酚氯化化合物的比例,样品作为阻燃剂的效率提高。
计算结果表明,电子催化策略显着降低了将N 2转换为AZO化合物的活化能。与非催化反应相比,该反应需要3.44 eV(在正常条件下几乎不可能),电子催化的途径将活化能降低至仅为0.14 eV,从而使反应在动力学上可行。此外,该策略表现出广泛的适用性,扩展到偶氮合成超出各种芳基卤化物和亲核芳香族化合物,为合成高价值增添化学物质的有效方法提供了有效的方法。
偶氮化合物的区分是存在至少一个氮氮双键(n = n)。这些化合物可能具有各种结构。目前,合成的偶氮化合物在许多行业中广泛使用,包括化妆品,食品,油漆,塑料,汽车和分析化学[1-6]。如Oros等人报告的工作所示,研究了商业重氮化合物的抗菌特性。已经表明,合成染料的抗菌功效受其基本化学结构的强烈影响,而不是受生物学作用的选择性[7]。不适用于商业目的并包括异性零件的偶氮苯甲苯也可能导致抗菌物质,例如含有吲哚的偶氮染料[8,9],乙酰胺[10-12] [10-12],甚至是烟酸衍生物[13-15]。在这种特殊情况下,Aiube等。证明了基于偶氮的chalcones对白色念珠菌和塞拉蒂亚·马斯科斯(Candida Marcescens)具有值得注意的功效,超过了一些传统的抗生素药物和抗真菌治疗方法。基于这些发现,表明偶氮化合物对链球菌,酵母C和革兰氏阴性的机会性细菌具有活性。着色剂,例如偶氮部分,可能表现出抗菌特性。但是,必须仔细考虑官能团的设计[16-19]。al etaibi等。Kumar等。 [21]达到了相同的发现,表明偶氮化合物表现出强烈的抗菌作用,并且也充当抗真菌剂。Kumar等。[21]达到了相同的发现,表明偶氮化合物表现出强烈的抗菌作用,并且也充当抗真菌剂。[20]观察到,与抗菌氨苄青霉素和用作对照的抗菌氨基霉素和抗真菌性环己酰亚胺相比,某些偶氮衍生物被显示出显着的抗菌活性。Ali等人进行的研究。[22]表明,在元位置中具有2组的偶氮染料具有
新的咪唑-5-氮杂化合物的合成5 - (((e)-Benzylidene)-3-((4'-(((Z)-Phenyldiazenyl)) - [1,1,1'-二苯基] -4-4- ylive- 2-乙烯基)-3-乙烯基-3,5-二氢-4 h-imidazol-4--在此工作,并在此工作。α,β-β-不饱和羧酸与硫二酰氯化物作为起始材料的反应,导致(E)-4-苯乙烯-2-氯羟唑-5(4 h) - 一(化合物A3)在两个步骤中通过苯甲酰氨酸和苯二氮的芳族芳族含有苯甲酸盐和芳族的水分,然后在两个步骤中处理了苯甲酸盐和芳族的水中,并在水中含有芳族的水含量和水中的水。耦合反应。 通过FT-IR,1 H-NMR和13 C-NMR光谱法对合成化合物的特征进行了表征。 抗菌和抗氧化活性的研究表明,这些分子中的一些是作为潜在的抗菌和抗氧化剂的。 k e y w o r d sα,β-β-不饱和羧酸与硫二酰氯化物作为起始材料的反应,导致(E)-4-苯乙烯-2-氯羟唑-5(4 h) - 一(化合物A3)在两个步骤中通过苯甲酰氨酸和苯二氮的芳族芳族含有苯甲酸盐和芳族的水分,然后在两个步骤中处理了苯甲酸盐和芳族的水中,并在水中含有芳族的水含量和水中的水。耦合反应。通过FT-IR,1 H-NMR和13 C-NMR光谱法对合成化合物的特征进行了表征。抗菌和抗氧化活性的研究表明,这些分子中的一些是作为潜在的抗菌和抗氧化剂的。k e y w o r d s
摘要 超表面已证明具有在纳米尺度上利用光的奇异能力,这不仅对经典光学而且对量子光学都很重要。量子态的动态操控是量子信息处理的核心;然而,到目前为止,这种功能很少在超表面中实现。本文,我们报告了一种利用非线性超表面对光子量子态进行全光动态调制的方法。该超表面由金属纳米结构和光异构化偶氮层组成。通过光学切换偶氮分子在二元异构态之间来调节等离子体共振,我们实现了对正交偏振光子传输效率以及它们之间的相位延迟的动态控制,从而有效控制纠缠态。作为一个例子,量子态蒸馏已被证明可以将贝尔态从非最大纠缠态恢复到保真度高于 98% 的贝尔态。我们的工作将丰富超表面在量子世界中的功能,从静态到动态调制,使量子超表面走向实用。
由于缺乏针对性的治疗方法,三阴性乳腺癌的临床治疗仍然具有挑战性。由于三阴性乳腺癌具有高度缺氧性且HIF-1α的表达高于其他亚型,我们制备了缺氧响应性聚合物胶束,共负载药物和shRNA,通过靶向缺氧肿瘤微环境,随后在缺氧条件下靶向过表达的HIF-1α来治疗三阴性乳腺癌。胶束由甲氧基聚乙二醇(mPEG)和聚-L-赖氨酸(PLL)共聚物组成,以AZO作为mPEG和PLL之间的缺氧响应桥。一旦暴露于缺氧,AZO桥就会断裂,导致胶束解体并快速释放。体外和体内结果表明,通过对缺氧的敏感反应,胶束能够同时将药物和shRNA递送到缺氧部位并实现位点特异性快速释放;缺氧响应性shRNA递送有效沉默HIF-1α及其下游基因,不仅改善缺氧肿瘤对药物的反应,而且调节肿瘤微环境以进一步改善药物和shRNA递送;因此,化疗和HIF-1α靶向基因治疗的协同治疗在小鼠原位TNBC模型中抑制了原发性TNBC肿瘤的生长及其远处转移。缺氧响应性聚合物胶束因其良好的生物相容性而成为一种安全、有效且普遍适用的药物和基因载体,可用于治疗TNBC以及其他缺氧肿瘤。