讲座实验室实验室 TA A01/CRN 20880 B02 周一 13:30 – 16:20 Ziyi Feng 时间:TWF B04 周一 13:30 – 16:20 Sahand Mosayyebpour 时间:11:30 – 12:20 B06 周二 13:30 – 16:20 Jinlong Zhang 地点:ECS 125 B08 周二 13:30 – 16:20 Yifeng Bie B10 周三 13:00 – 15:50 Bharat Karri B12 周三 13:00 – 15:50 TBA B14 周二 16:30 – 19:20 Minh Tu Hoang B16 周二 16:30 – 19:20 TBA实验室每两周在 ELW B324 举行一次,从2 月 3 日。必修教材书名:微电子电路,第 7 版作者:AS Sedra、KC Smith 出版社:牛津大学出版社年份:2015 网站:本课程将使用 CourseSpaces 计算器:考试期间允许使用不可编程、非图形、非通信计算器评估:作业:15% 截止日期:周五 16:00 实验室 20% 期中考试 20% 日期:2 月 14 日星期五期末考试 45% 注意:
摘要 癌症治疗疫苗用于通过放大现有的免疫反应来增强患者自身的免疫系统。基于细菌的 emm55 疫苗与 PD1 检查点抑制剂一起在病灶内给药对 B16 黑色素瘤小鼠模型产生了强大的抗肿瘤作用。然而,设计联合疗法的最佳注射顺序和注射频率并非易事。在这里,我们开发了一个根据实验数据校准的耦合常微分方程模型,并使用网格自适应直接搜索法优化 emm55 疫苗和抗 PD1 联合治疗的治疗方案。该方法确定,早期连续疫苗注射与减少间隔时间的分布式抗 PD1 注射相结合可产生最佳的肿瘤尺寸减小效果。优化的方案导致单独疫苗治疗的肿瘤面积减少了两倍,联合治疗的肿瘤面积减少了四倍。我们的结果揭示了最佳治疗条件下的肿瘤亚群动态,为有效的治疗设计定义了路径。类似的计算框架可以应用于其他肿瘤和其他联合疗法,以在相当不受限制和廉价的环境中产生可通过实验检验的假设。1. 简介虽然免疫系统提供了抵御病毒或癌细胞等异物的第一道防线,但患者自身的激活 T 细胞很少能有效杀死大肿瘤。因此,需要其他方法来增强患者的免疫系统。其中一种方法是施用治疗性癌症疫苗,旨在通过诱导新的或放大现有的免疫反应来增强患者自身的免疫系统,从而消灭癌细胞 [1-4]。当这种疫苗被注射到肿瘤中时,它们会转染肿瘤
抽象背景增强了许多癌症的葡萄糖代谢。6-磷酸葡萄糖脱氢酶(G6PD)是涉及五旬节磷酸途径的速率限制酶,该酶维持NADPH水平并保护细胞免受氧化损伤。我们最近发现,低G6PD表达与活性肿瘤免疫相关。但是,涉及G6PD和肿瘤免疫力的机制尚不清楚。我们使用G6PD敲除恶性黑色素瘤细胞进行体外研究,使用GEO数据集进行途径分析,体内研究与免疫检查点抑制剂(ICIS)结合使用小鼠黑色素瘤模型,并使用42例黑色素瘤患者和30例用ICIS治疗的肺癌患者中的预后分析进行了预后分析。在化学上和遗传上抑制G6PD的结果抑制可降低NADPH的产生并降低其氧化应激耐受性。这导致细胞死亡,伴随着高移动性组框1的释放以及钙网蛋白转移到质膜上的易位。这些发现表明抑制G6PD可以诱导免疫原性死亡。在用G6PD-KNOCKDOWN B16黑色素瘤细胞移植并用抗PD-L1抗体治疗的C57BL/6小鼠实验中,观察到肿瘤大小的显着降低。有趣的是,仅在一部分病变中抑制G6PD增加了其他病变对ICI的敏感性。此外,在42例黑色素瘤患者和30例接受ICI治疗的肺癌患者中,G6PD表达较低的患者的预后比G6PD高度表达的患者更好(P = 0.0473;黑色素瘤,P = 0.0287;肺癌)。结论G6PD抑制是一种有效的治疗策略,可触发肿瘤中的免疫原性死亡,显着增强免疫疗法的功效。
Tran,K.B。 1,2,3和Shepherd,P.R。 1,2,3 1 Auckland Cancer Society Research Centre, University of Auckland, New Zealand 2 Department of Molecular Medicine and Pathology, University of Auckland, New Zealand 3 Maurice Wilkins Centre, University of Auckland, New Zealand BRAF inhibitors such as vemurafenib (VEM) are only effective as single agent mealnoma therapy in BRAF-mutant melanomas and resistance to the treatment develops within 6 to 12月份。 我们研究了靶向VEGF受体是否可以提高BRAF抑制疗法的功效。 我们从独特的NZM黑色素瘤细胞系中测量了VEGF-A分泌水平。 通过外显子组测序,RNASEQ和Western blotting分析了这些细胞中VEGF途径的变化。 异种移植物和同步模型用于研究VEM和VEGFR2抑制剂Axitinib(AXI)在体内的功效和安全性。 进行物种特异性肿瘤RNA测序,以识别受肿瘤细胞和宿主基质中药物组合影响的唯一影响的途径。 rnascope和免疫组织化学用于进一步分析药物在肿瘤中的作用。 v600E突变药物黑色素瘤细胞系分泌的VEGF在与RAS突变或非BRAF/NONRAS系的线相比,分泌的VEGF水平明显更高。 VEM在V600E突变细胞系中下调VEGF分泌,而不是Ras突变或Nonbraf/NonRAS细胞系中的分泌。 我们发现VEM + AXI组合协同抑制了肿瘤的生长。 有趣的是,该组合还抑制了BRAF-WildType异种移植物和同步B16肿瘤的生长。Tran,K.B。1,2,3和Shepherd,P.R。1,2,3 1 Auckland Cancer Society Research Centre, University of Auckland, New Zealand 2 Department of Molecular Medicine and Pathology, University of Auckland, New Zealand 3 Maurice Wilkins Centre, University of Auckland, New Zealand BRAF inhibitors such as vemurafenib (VEM) are only effective as single agent mealnoma therapy in BRAF-mutant melanomas and resistance to the treatment develops within 6 to 12月份。我们研究了靶向VEGF受体是否可以提高BRAF抑制疗法的功效。我们从独特的NZM黑色素瘤细胞系中测量了VEGF-A分泌水平。通过外显子组测序,RNASEQ和Western blotting分析了这些细胞中VEGF途径的变化。异种移植物和同步模型用于研究VEM和VEGFR2抑制剂Axitinib(AXI)在体内的功效和安全性。物种特异性肿瘤RNA测序,以识别受肿瘤细胞和宿主基质中药物组合影响的唯一影响的途径。rnascope和免疫组织化学用于进一步分析药物在肿瘤中的作用。v600E突变药物黑色素瘤细胞系分泌的VEGF在与RAS突变或非BRAF/NONRAS系的线相比,分泌的VEGF水平明显更高。VEM在V600E突变细胞系中下调VEGF分泌,而不是Ras突变或Nonbraf/NonRAS细胞系中的分泌。我们发现VEM + AXI组合协同抑制了肿瘤的生长。有趣的是,该组合还抑制了BRAF-WildType异种移植物和同步B16肿瘤的生长。当Axi被我们的内部VEGFR2抑制剂SN35332替换时,该组合还提供了协同效应,这表明组合效应可能是特定于途径的。在EMT,p53,TGF-β和血管生成标志途径中鉴定出与途径相关的合成致死性。最后,我们开发了一种对vemurafenib抗性的细胞系,并表明VEM + Axi的组合使肿瘤复合BRAF抑制疗法。一起,这项研究提供了黑色素瘤生物学中VEGF轴与BRAF信号传导之间的重要联系,并共同靶向这两个轴可以增强BRAF抑制疗法的疗效,不仅在BRAF-突变剂中,而且在BRAF-wild型肿瘤中。
靶向疗法和免疫疗法并行开发,通常使用不同的实验系统。即使在今天,靶向药物通常也会针对癌细胞系/细胞来源的异种移植 (CDX)、患者来源的异种移植 (PDX) 和/或最近的人类肿瘤球体/类器官进行测试。这些模型的优势包括其人类起源、相关的突变/表观遗传事件以及保留一定程度的肿瘤异质性。然而,这样的系统无法评估抗肿瘤免疫反应。PDX 已在“人源化”小鼠中建立,但约 30% 的人/小鼠生长因子、细胞因子和趋化因子无法与其他物种中的同源受体相互作用,从而对“人源化”施加了内在限制 (Walsh 等人,2017)。相比之下,免疫疗法主要针对同源小鼠肿瘤进行测试 (Mosely 等人,2017)。这些模型(例如 B16、CT26 和 MC38)主要由致癌物引起,来源于未知、无关或并非最相关的细胞,并且通常缺乏相应人类疾病中发现的关键致病突变。一些靶向药物/免疫疗法已在基因工程小鼠模型(GEMM)中进行了评估,这些模型旨在携带与疾病相关的基因异常并具有完整的免疫系统(Kersten et al., 2017)。通常,对于给定的恶性肿瘤仅会产生少数突变组合,这限制了可分析的人类疾病的多样性。大多数 GEMM 还会同时将癌症相关缺陷引入目标组织的所有上皮细胞。相比之下,现实世界的肿瘤以克隆方式起始,并在以正常细胞为主的海洋中扩增和进展。已经生成了一系列可移植的 GEMM 衍生黑色素瘤模型(Yum/Yummer)(Meeth 等,2016),但这些都是基于相同的躯干突变,具有有限的遗传多样性。
免疫治疗剂的肿瘤内递送代表了一种令人信服的解决方案,可以直接解决局部肿瘤免疫力的障碍。但是,我们以前已经表明,脱靶传递是肿瘤内注射期间的一个重大问题。这可能导致药物疗效和全身毒性降低。我们已经确定了影响肿瘤内药物输送的三个变量:注射技术,制剂和肿瘤微环境。这项研究的目的是表征每个变量中修饰对肿瘤内药物递送和免疫疗法功效的影响。方法在大鼠和小鼠合成性肿瘤模型中具有超声,荧光镜和CT扫描能力的混合图像引导套件中进行了肿瘤内注射。通过CT体积成像对肿瘤内药物分布进行定量。使用流式细胞仪和单细胞RNA测序评估了不同针头设计和基于水凝胶的药物递送对干扰素基因(STING)激动剂的免疫反应的影响。我们还评估了肿瘤刚度对药物注射分布的影响。针头设计的结果变化,特别是使用多侧孔针的变化,相对于传统的终端针,导致肿瘤内药物沉积大约改善了三倍。同样,通过多侧孔针的刺激性激动剂的递送导致I型干扰素相关基因的表达显着增加,而“炎症”树突状细胞基因签名相对于端孔刺激性激动剂的递送。嵌入刺激性激动剂的多域肽基水凝胶导致肿瘤内沉积的显着改善。但是,发现水凝胶会在靶肿瘤内对自身产生强大的免疫反应。对肿瘤内药物递送的肿瘤基质的评估表明,与企业肿瘤(MC38结肠直肠)相比,软肿瘤(B16黑色素瘤)中肿瘤内分布的两倍改善。
免疫疗法彻底改变了癌症治疗。但是,对于大多数晚期实体瘤患者,尚未实现持续的临床益处。髓样细胞(如单核细胞和巨噬细胞)很容易积聚在肿瘤中,在某些情况下,肿瘤质量的75%。重编程循环和肿瘤与髓样细胞相关,以激活其通过吞噬作用,细胞因子分泌和抗原表现来激活抗肿瘤适应性免疫的能力,是一种有吸引力的方法,可利用并策划系统性的抗肿瘤免疫。在体内专门靶向和激活髓样细胞仍然具有挑战性。为了克服这一障碍,我们开发了一种新型的体内髓细胞工程平台:FC A受体融合构建体。与其他嵌合抗原受体(CAR)不同,该构建体是通过将肿瘤识别SCFV与人体FC受体的α链融合而设计的。这些受体的稳定表达和功能需要内源表达的FC受体γ链,FC受体γ链是一种对免疫细胞表达有限的蛋白质,主要是髓样细胞1-3。在这里,我们介绍了包裹FC A受体融合构建体mRNA的静脉输注脂质 - 纳米颗粒(LNP)导致髓样细胞对构建体的摄取和表达。在肝细胞癌和三重阴性乳腺癌的免疫缺陷异种移植模型中,针对GPC3或trop2靶向FC的LNP mRNA的递送A受体融合构建体导致肿瘤杀死,从而确认了这种方法为骨髓细胞编程的能力。此外,在B16合成性黑色素瘤模型中,用黑色素瘤抗原GP75靶向FC A受体融合构建体的治疗也与启动广泛的全身免疫反应的启动有关,其特征在于肿瘤积累活化的CD8+ T细胞,可减少与肿瘤相关的TREG和SpleeNing spleen and spleen spleen and spleen的活化。这些研究共同强调了FC A受体融合构建体的潜力,直接在体内传递以编程髓样细胞以识别和杀死癌症。
免疫疗法彻底改变了癌症治疗。但是,对于大多数晚期实体瘤患者,尚未实现持续的临床益处。髓样细胞(如单核细胞和巨噬细胞)很容易积聚在肿瘤中,在某些情况下,肿瘤质量的75%。重编程循环和肿瘤与髓样细胞相关,以激活其通过吞噬作用,细胞因子分泌和抗原表现来激活抗肿瘤适应性免疫的能力,是一种有吸引力的方法,可利用并策划系统性的抗肿瘤免疫。在体内专门靶向和激活髓样细胞仍然具有挑战性。为了克服这一障碍,我们开发了一种新型的体内髓样细胞工程平台:FC A受体(FC A R)融合蛋白。与其他嵌合抗原受体(CAR)不同,该构建体是通过将肿瘤识别SCFV与人体FC受体的α链融合而设计的(CD89)。这些受体的稳定表达和功能需要内源表达的FC受体伽马链(FCR G),这是一种对免疫细胞(主要是髓样细胞)表达有限的蛋白质。术中包裹着编码FC A R融合蛋白的mRNA的脂质纳米颗粒(LNP)导致LNP的摄取并在髓样细胞中摄取嵌合受体融合蛋白的表达。在肝细胞癌的免疫缺陷异种移植模型和三重阴性乳腺癌中,编码GPC3或Trop2靶向FC A R融合蛋白的LNP mRNA的递送导致抗肿瘤疗效,从而确保了这种方法来编程髓样细胞的能力。此外,在B16/10合成性黑色素瘤模型中,用黑色素瘤抗原GP75靶向FC A R融合蛋白的治疗与启动广泛的全身免疫反应的启动,其特征在于激活的CD8 + T细胞通过激活的CD8 + T细胞浸润TME,与肿瘤相关的tregs和Antigen comcipination in Antigen of Antigen of Antigen of Antigen of Antigen of Antigen of Antigen of Antigen of Antigen of Antigen of Antigen of Antigen。当在cynomolgus猴子中注入时,抗Trop2 LNP导致了抗Trop2 Car的细胞表面表达,并且与安全读数的显着调节无关。这些研究共同强调了FC A R融合蛋白直接在体内传递以编程髓样细胞以识别和杀死癌症的潜力。
Genomic and bioinformatic profiling of mutational neoepitopes reveals new rules to predict anticancer immunogenicity Fei Duan 1 , Jorge Duitama 2 , Sahar Al Seesi 2 , Cory M. Ayres 3 , Steven A. Corcelli 3 , Arpita P. Pawashe 1 , Tatiana Blanchard 1 , David McMahon 1 , John Sidney 4 , Alessandro Sette 4 , Brian M. Baker 3,I. Mandoiu 2和Pramod K. Srivastava 1 1 1 1免疫学和Carole和Ray Neag Neag Neag综合癌症中心,康涅狄格大学医学院,法明顿大学,CT 06030 2计算机科学与工程系,康涅狄格大学,康涅狄格大学,CT 06269 306269 3.巴黎圣母院(Notre Dame),在46556 46556 4 Lajolla过敏和免疫学研究所,La Jolla,CA 92037癌症的突变曲目创造了使癌症免疫原性的新皮特。在这里,我们介绍了两个新型工具,这些工具以相对较高的精度识别了一小部分的新皮特(在数百种潜在的新皮上)通过抗肿瘤T细胞响应保护宿主。这两个工具由(a)突变序列与未分离的对应物之间的NetMHC得分的数值差异称为差分激光指数(DAI),以及(b)MHC I肽相互作用的构象稳定性。从机械上讲,这些工具识别出突变以创建用于MHC结合的新的锚固残基的新皮特,并使整体肽更加刚性。这些结果大大扩展了目标癌抗原的宇宙,并确定了人类癌症免疫疗法的新工具。我们将方法应用于mutliple独立肿瘤。令人惊讶的是,此处鉴定出的保护性新皮肤引起了CD8依赖性免疫力,尽管它们对KD的亲和力是比500 nm的阈值低的数量级,但被认为合理的这种相互作用。实际上,包括DAI算法在内的管道首先是在肿瘤细胞系的甲基甲基细胞系中进行经验得出的,然后在CMS5细胞系上进行了测试。通过DAI算法预测的抗肿瘤活性在CMS5中明显强大。这种变化很可能是甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基苯甲酸酯特有的免疫抑制机制的反映,因此与DAI算法本身的优点无关。此后,DAI算法在另一种小鼠肿瘤B16黑色素瘤和该系中T细胞反应的数据中进行了测试,与仅NETMHC的显着优越性一致。尽管本研究的重点是鉴定CD8 T细胞的MHC I限制表位,但该分析也可以扩展到CD4 T细胞的MHC II限制表位。
KL 74 None E7 Squires Student Center 180 Existing B49, 301 N4 Steger Hall - North Wing 120 J8 Steger Hall - South Wing 119 Existing - unverified J9 Sterrett Center 242 Existing 130 P10 Storage Shed F2 Student Services Building 192 Existing C24 L8 Surge Space Building 170 None L2 TESKE HOUSE 302 Existing A1, 200A P5 The Grove [President's House] 274 None J7 The Inn at Virginia技术0250C现有 - 未经验证的H4剧院101 169无O4 Torgersen Hall 174现有 - 未经验证的M4大学书店178 N4 N4 N4 VAWTER HALL 25现有A31 N5冒险271现有271现有 - 未经验证的O5 O5 O5中心184 M12 M12 VET MED 1 140 I10 I10 I10 I10 I10 I10 I10 Med Med sepe Med septh Med Epease Med Epease Med j11 Vet 3 4B 4c 4c 4c 4c 4c 4c 4b 4c 4b 4. [Non-Client Animal] 146 Existing B31 J11 Vet Med Phase 4D 145 I11 Visitors & Undergraduate Admissions Center 249 Existing A16A G3 Wallace Hall 115 Existing B5 K8 War Memorial Chapel 181 Existing C11 M4 War Memorial Gymnasium 182 Existing D3 M6 Whitehurst Hall 26 Existing A22 N6 Whittemore Hall 134 None K3 Williams Hall 152 Existing C42, D43 K4女子垒球场&Dugouts 0185E现有 - 未验证的M10 Wright House 276 J5
