在本课程中,我们将通过了解如何以高级语言编写的ML模型分解为低级内核,并以分布式方式跨硬件加速器(例如GPU)执行。本课程涵盖的主题包括:神经网络和反向传播,用于表达ML模型的编程模型,自动差异化,深度学习加速器,分布式培训技术,计算图优化,自动内核的生成,内存优化等。本课程的主要目标是就现有ML系统的工作方式提供全面的看法。在整个课程中,我们还将学习这些系统背后的设计原则,并讨论为下一代ML应用程序和硬件平台构建未来ML系统的挑战和机会。
HAMON FZCO,研发摘要这项工作提出了一个广义梯度估计器,该梯度估计器优化了涉及已知或黑框函数的期望,用于离散和连续的随机变量。我们合成并扩展了用于构建梯度估计器的标准方法,提供了一个框架,该框架会产生最小的计算开销。我们提出的方法证明了各种自动编码器的有效性,并引入了对加强学习,适应离散和连续的动作设置的直接扩展。实验结果揭示了提高的训练性能和样本效率,突出了我们在各个领域中估计器的实用性。未来的应用程序包括具有复杂注意力机制的培训模型,具有非差异可能性的连续远值模型,以及将我们的方法与现有方差减少技术和优化方法相结合。关键字:梯度估计,变异自动编码器(VAE),增强学习,重新聚集技巧,控制变体,策略梯度方法1。简介基于坡度的增强支持AI中的推进和支持学习。反向传播[16,19,12]的数字确定了可区分目标的斜率,而重新聚集技巧[24,4,4,13]赋予了概率模型的实际改进。尽管如此,许多目标需要斜率进行反向传播,例如,支持学习的黑盒能力[18]或离散抽样的不连续性[7,2]。[22]通过持续的放松提出了一个有思想的,低裂开的评估者。2。正在进行的技术通过角度评估者(包括艺人专家方法[21]和持续放松[7,2]来解决这一问题。我们通过学习基于大脑网络的控制变量来扩大这一点,即使没有一致的放松,也可以产生较低的,公平的评估材料,例如在支持学习或黑盒改进中。背景2.1。倾斜度估计器简化边界θ扩大支持学习中显示的假设(预期奖励Eτ〜π [r])和休眠变量模型(增强p(x |θ)= e p(z |θ)[p(x | z)])。我们增强L(θ)= E P(B |θ)[F(B)]。(1)
在这项研究中,我们在特征纯化和逐渐反向传播过程中检查了通道特征与卷积内核之间的关联,重点是网络内的向前和向后传播。因此,我们提出了一种称为特征空间固化的称为密集的Channel压缩的方法。利用了该方法的中心概念,我们引入了两个用于主链和头部网络的创新模块:特征空间固化结构(DF)的密集通道压缩和不对称的多级压缩解耦头(ADH)。集成到Yolov5模型中时,这两个模块表现出了出色的性能,从而导致修改的模型称为Yolocs。在MSCOCO数据集,大型,中和小型Yolocs模型上评估的AP分别为50.1%,47.6%和42.5%。保持推理速度与
在本课程中,学生将学习基本原则,基本的数学和深度学习的实施细节。这包括用于优化这些高度参数化模型的概念和方法(梯度下降和反向传播以及更普遍的计算图),组成它们的模块(线性,卷积和汇总层,激活功能等。)和常见的神经网络体系结构(卷积神经网络,经常性神经网络等)。将展示从计算机视觉到自然语言处理和决策(强化学习)的应用。通过深入的编程作业,学生将学习如何实施这些基本的构建块,以及如何使用流行的深度学习库Pytorch将它们整合在一起。在最后一个项目中,学生将通过以他们热衷的问题探索这些概念来应用他们所学到的知识。
2对于一个给定的培训数据示例存储在.csv文件中,并实现并演示候选算法算法输出与培训示例一致的所有假设集的描述。3编写一个程序,以演示基于决策树的ID3算法的工作。使用适当的数据集来构建决策树并应用此知识来对新样本进行分类。4编写一个程序,以实现幼稚的贝叶斯分类器,以将存储为.csv文件存储的示例培训数据集。考虑了很少的测试数据集,计算分类器的准确性。5编写一个程序来实现k-nearest邻居算法以对虹膜数据集进行分类。打印正确与错误的预测。6通过实现反向传播算法并使用适当的数据集测试相同的人工神经网络。7编写一个程序,以在给定数据集上使用残差图演示回归分析。
在这项工作中,我们开发了卷积神经生成代码(Conv-NGC),这是对基于卷积/反卷积计算的情况进行预测性编码的概括。特定的是,我们具体地实现了一种灵活的神经生物学动机算法,该算法逐渐重新填充了潜在的状态图,以便动态地形成更准确的内部表示/重构自然图像模型。在复杂数据集(例如Color-Mnist,CIFAR-10和SVHN)等复杂数据集上进行了评估。我们研究了我们的大脑启发模型对重建和图像降解任务的有效性,并发现它具有卷积自动编码系统的竞争力,该系统通过误差的反向传播培训,并超过了它们,并超越了它们在造成的分发重构方面的表现(包括完整的90K ininic-10测试集)。关键字:预测编码;受脑为灵感的学习; compoter视觉,神经形态硬件,卷积
该课程将涵盖实施计算成像和机器学习解决方案所需的基本数学和计算方法。课程将介绍:•与线性代数,向量空间和矩阵分解相关的基本对象和工具; •代表计算成像和机器学习的核心组成部分的数值优化方法。将首先引入向量计算中的基本概念和工具,包括矢量值功能和矩阵的梯度,以及反向传播和自动分化。然后,将涵盖基于优化的计算成像和机器学习问题的公式。之后,将详细介绍数值优化技术,重点是基于一阶确定性和基于随机梯度的方法。 •概率理论中的基本概念以及诸如贝叶斯推论,近似推断以及随机抽样方法等统计推断中的基本技术; •在计算成像和机器学习中的应用,包括分类,回归,降低性降低和密度估计。学生学习目标(SLO)
- 语义网络、框架和本体 第 3 周:机器学习简介 - 机器学习概述:监督学习、无监督学习、强化学习 - 回归和分类算法 - 模型评估和验证技术 第 4 周:监督学习算法 - 线性回归和逻辑回归 - 决策树和集成方法:随机森林、梯度提升 - 支持向量机 (SVM) 第 5 周:无监督学习算法 - K 均值聚类 - 层次聚类 - 主成分分析 (PCA) 和 t 分布随机邻域嵌入 (t-SNE) 第 6 周:自然语言处理 (NLP) - 文本处理和标记化的基础知识 - 命名实体识别 (NER) 和词性 (POS) 标记 - 情绪分析和文本分类 第 7 周:深度学习基础 - 人工神经网络 (ANN) 简介 - 深度前馈网络和激活函数 - 训练神经网络网络:反向传播算法第 8 周:卷积神经网络 (CNN) - CNN 架构基础
我们提出了一种新型的使用生成对抗网络的新型典范引导的面部介绍框架。我们的方法不仅保留了输入面部图像的质量,而且还可以使用类似示例性的面部属性来完成图像。我们通过同时利用输入图像的全局样式,从随机潜在代码生成的随机样式以及示例图像的示例样式来实现这一目标。我们引入了一种新颖的属性相似性指标,以鼓励网络以一种自我监督的方式从示例中学习面部属性的风格。为了确保跨油漆区域边界的自然过渡,我们引入了一种新型的空间变体梯度反向传播技术,以根据空间位置调整损耗梯度。我们通过实用应用程序对公共Celeba-HQ和FFHQ数据集进行了广泛的评估,这证明了面部涂漆的视觉质量卓越。源代码可在https://github.com/longlongaaago/exe-gan上找到。
我们提出了直接的奖励微调(草稿),这是一种简单有效的方法,用于调整扩散模型,以最大程度地提高可区分的奖励功能,例如人类偏好模型的分数。我们首先表明,可以通过完整的抽样程序将奖励函数梯度进行后退,并且这样做可以在各种奖励上实现强劲的绩效,超过了基于强化学习的方法。然后,我们提出了草稿:草稿K的更多有效变体,该变体仅将反向传播截断为采样的最后K步骤,而Draft-LV则获得了k = 1时的较低差异梯度估计。我们表明,我们的方法在各种奖励功能上都很好地工作,可以用来实质上提高稳定扩散1.4产生的图像的美学质量。最后,我们在方法和先前的工作之间建立了联系,从而提供了基于基于梯度的细胞调整算法的设计空间的统一观点。