摘要:胆汁酸代谢是肠道菌群调节的关键途径。peptaceTobacter(梭状芽胞杆菌)Hiranonis被描述为负责将原发性转化为狗中二次粪便未结合的胆汁酸(FUBA)的主要物种。该多步生物化学途径由胆汁酸诱导(BAI)操纵子编码。我们的目的是评估海藻链球菌的丰度,一个特定基因(BAICD)(BAICD)的丰度和次级FUBA浓度之间的相关性。在这项回顾性研究中,分析了24只狗的133个粪便样品。使用qPCR确定了海藻假单胞菌和BAICD的丰度。通过气相色谱 - 质谱法测量FUBA的浓度。BAICD丰度与次级Fuba(ρ= 0.7377,95%CI(0.6461,0.8084)),p <0.0001)表现出很强的正相关。类似地,海藻和次级fuba之间存在很强的相关性(ρ= 0.6658,95%CI(0.5555,0.7532),p <0.0001)。未观察到表现出FUBA转化和缺乏Hiranonis的动物。这些结果表明,海藻链球菌是狗中原发性胆汁酸的主要转换器。
cow-pea [Vigna unguiculata(L。Walp]]是一种重要的豆类植物作物,其营养谷物,绿色豆荚和新鲜叶子种植,它们富含大量和微量营养素,例如碳水化合物,蛋白质,维生素和矿物质(Badiane等。2004,Carvalho等。 2019,Bai等。 2020,El Masry等。 2021,Silva等。 2021)。 根据Sprent等人的说法。 (2009),将运输用作动物的饲料。 由于蛋白质含量更高,因此被称为“蔬菜肉”(Gopalakrishnan 2007)。 由于农作物的植物较高生长,该区域被完全覆盖,以防止土壤侵蚀。 cow豆具有巨大的潜力作为替代植物作物的干燥土地种植(Choudhary and Yadav 2011,Singh等人。 2022)。 在印度,它在拉贾斯坦邦,北方邦,中央邦,卡纳塔克邦,贾坎德邦,比哈尔邦,2004,Carvalho等。2019,Bai等。 2020,El Masry等。 2021,Silva等。 2021)。 根据Sprent等人的说法。 (2009),将运输用作动物的饲料。 由于蛋白质含量更高,因此被称为“蔬菜肉”(Gopalakrishnan 2007)。 由于农作物的植物较高生长,该区域被完全覆盖,以防止土壤侵蚀。 cow豆具有巨大的潜力作为替代植物作物的干燥土地种植(Choudhary and Yadav 2011,Singh等人。 2022)。 在印度,它在拉贾斯坦邦,北方邦,中央邦,卡纳塔克邦,贾坎德邦,比哈尔邦,2019,Bai等。2020,El Masry等。2021,Silva等。2021)。根据Sprent等人的说法。(2009),将运输用作动物的饲料。由于蛋白质含量更高,因此被称为“蔬菜肉”(Gopalakrishnan 2007)。由于农作物的植物较高生长,该区域被完全覆盖,以防止土壤侵蚀。cow豆具有巨大的潜力作为替代植物作物的干燥土地种植(Choudhary and Yadav 2011,Singh等人。2022)。在印度,它在拉贾斯坦邦,北方邦,中央邦,卡纳塔克邦,贾坎德邦,比哈尔邦,
纽约,2024 年 10 月 22 日 — 今天,贝莱德通过推出 iShares A.I. 扩大了投资者对技术和人工智能股票的投资渠道。创新和技术主动型 ETF(纽约证券交易所代码:BAI)和 iShares 技术机会主动型 ETF(纽约证券交易所代码:TEK)。虽然人工智能革命仍处于早期阶段,但贝莱德认为其长期影响将是深远的。“我们正处于智能革命的黎明,”贝莱德基本股票技术集团负责人 Tony Kim 表示。“这些主动型 ETF 可以帮助投资者抓住人工智能和先进技术全栈中超大且被忽视的投资机会。” 作为一个投资主题,贝莱德将人工智能视为一股具有广泛投资影响的巨型力量,无论是现在还是长期,它都为投资者提供了一个进入可能实现显着增长的市场的机会。利用贝莱德追求阿尔法收益的专业知识来捕捉不断发展的全球人工智能和技术趋势 1 BAI 和 TEK 都以流动性强、透明且税收效率高的 ETF 包装为投资者提供贝莱德最好的投资见解。基金由 Tony Kim 和 Reid Menge 管理,受益于贝莱德基本股票技术集团的专业知识。贝莱德在美国管理着 40 多个活跃 ETF,管理着 320 亿美元的资产。 2
Qi Huang 1 Yangrui Chen 1 Zhi Zhang 1 Yanghua Peng 1 Xiang Li 1 Cong Xie 1 Shibiao Nong 1 Yulu Jia 1 Sun He 1 Hongmin Chen 1 Zhihao Bai 1 Qi Hou 1 Shipeng Yan 1 Ding Zhou 1 Yiyao Sheng 1 Zhuo Jiang 1 Haohan Xu 1 Haoran Wei 1 Zhang Zhang 1 Pengfei Nie 1 Leqi Zou 1 Sida Zhao 1 Liang Xiang 1 Zherui Liu 1 Zhe Li 1 Xiaoying Jia 1 Jianxi Ye 1 Xin Jin 2 , Xin Liu 1
朱伟、宋建军教授、韩琳、白华、王倩、尹胜、黄林博士、陈天、潘锋教授 清华大学材料科学与工程学院先进材料重点实验室、北京未来芯片创新中心,北京 100084,中国。电子邮箱:songcheng@mail.tsinghua.edu.cn,panf@mail.tsinghua.edu.cn 关键词:二维铁磁性、范德华半导体、Cr 2 Ge 2 Te 6 、界面调制、居里温度、垂直磁各向异性
许多决策问题涉及通过与环境互动并观察这些相互作用产生的奖励来学习。在机器学习领域,这一研究属于所谓的增强学习(RL)和训练与环境相互作用的人工剂的算法(Sutton和Barto,2018; Kaelbling et et and; Kaelbling等人。,1996; Bertsekas和Tsitsiklis,1996)。我们在这里对匪徒家族问题的最佳手臂识别(BAI)问题感兴趣,这与RL问题集有关,其中与环境的互动会产生立即奖励以及不必要的长期计划(请参阅Lattimore和Szepesvári,2020年的长期计划)。更确切地说,我们对BAI问题的量子版本感兴趣,为此我们设计了能够解决该问题的量子算法。Quantum机器学习是量子计算和机器学习界面上的一项研究场,目的是使用量子计算范式和技术来提高学习算法的速度和性能(Wittek,2014; Biamonte等人。 ,2017年; Ciliberto等。 ,2018年; Schuld和Petruccione,2018年)。 量子计算中的一个基本概念是量子叠加,这是量子算法(1996年)之类的量子算法(最受欢迎的量子算法之一)成功地解决了从n个项目的无结构数据库中删除一个项目的问题,否,2017年; Ciliberto等。,2018年; Schuld和Petruccione,2018年)。量子计算中的一个基本概念是量子叠加,这是量子算法(1996年)之类的量子算法(最受欢迎的量子算法之一)成功地解决了从n个项目的无结构数据库中删除一个项目的问题,否
提起本文:Bozkurt,A.,Xiao,J.,Farrow,R.,Bai,Jyh,Nerantzi,C.,Moore,S. ,D.,Honeychurch,S.,Hodges,M.,Swindell,A.,Frumin,I.,Tlili,A. O.,Huijser,H.,Jandrić,P.,Zheng,C.,Shea,P.,Duart,JM,Themeli,C.,Vorochkov,A.,Sani-Bozkurt,S.生成人工智能时代的教学与学习宣言:更好地驾驭未来的关键集体立场。 Open Praxis,16(4),页487–513。 DOI:https://doi.org/10.55982/openpraxis.16.4.777
脑机接口 (BCI) 利用用户的大脑活动来控制外部设备,而无需实际运动(Wolpaw 等人,2002 年;Belkacem 等人,2020 年)。这种大脑活动可以使用脑电图 (EEG)、皮层电图、立体脑电图、功能性近红外光谱 (fNIRS) 或功能性磁共振成像 (fMRI) 记录,其中 EEG 使用最多(Orban 等人,2022 年;Islam 和 Rastegarnia,2023 年)。最近,使用 EEG 的 BCI 已成为中风后 UE 运动康复的有前途的技术(Mane 等人,2022 年)。在这种情况下,BCI 在用户和外部设备之间建立了一个闭环系统。通过响应与运动相关的神经活动提供有意义的实时反馈来促进 BCI 和用户之间的这种交互。用户自己执行运动执行、运动尝试或运动想象 (MI),其中 MI 是运动的心理排练。重要的是,所有三种策略都伴随着事件相关的去同步 (ERD) 和同步 (ERS),这反映了振荡功率的降低和增加 (Pfurtscheller 和 Lopes da Silva,1999 年;Pfurtscheller 等人,2006 年;Miller 等人,2010 年)。可以使用不同的外部设备(例如,机器人、手臂矫形器、视觉反馈、功能性电刺激 (FES))向用户提供反馈,其中提供本体感受反馈的设备可能比仅提供视觉反馈更有效 (Ono 等人,2014 年;Bai 等人,2020 年)。具体而言,触发 FES 的 BCI(BCI-FES)被认为是最有效的 (Bai 等人,2020 年)。荟萃分析表明,用于 UE 运动康复的 BCI 可以改善 UE 运动功能(Bai 等人,2020 年;Kruse 等人,2020 年)。然而,人们对下肢 (LE) 运动康复的了解较少。最近基于运动相关皮质电位(Mrachacz-Kersting 等人,2016 年)、BCI-FES(Chung 等人,2020 年;Sebastián-Romagosa 等人,2023 年)和功能性近红外光谱介导的神经反馈(Mihara 等人,2021 年)的 BCI 研究显示步态表现有所改善。Sebastián-Romagosa 等人(2023 年)显示在 25 个疗程中步行速度提高了 0.19 米/秒。然而,迄今为止尚未研究多种 BCI 治疗对中风患者功能状态的影响。
Artem Shmatko 1,3,*,Patel 1:4,5,6,*,Ramin Rahmanzade 4.5,红色4.5,Luke Friedrich Schrimmpf 4.5.7,Big 4.5,Henri Bogumil 4.5,Sybren L.N.5月8日,马丁·西尔·詹妮克(Martin Sill Jannik)11,13,大卫·鲁斯(David Reuss),克里斯蒂安·埃罗德·孟德(Christian Herold-Mende)9,技能M琼斯6:14,Stefan M. Pfister,Arnault Esparia-Sack 31,32,Pascal Varlet 31,32,Brandner 33,Xiangzhi Bai 2,Andreas von Deimling 4.5,
27. Yang, J.,2022. 一种用于定量预测干湿状态下最大高度变化的聚合物刷理论,预印本,https://arxiv.org/abs/2208.06892 26. Yang, X.、Steck, J.、Yang, J.、Wang, Y. 和 Suo, Z.,2021. 可降解塑料易开裂。工程,7(5),第 624-629 页。 25. Chu, CK、Joseph, AJ、Limjoco, MD、Yang, J.、Bose, S.、Thapa, LS、Langer, R. 和 Anderson, DG,2020. 可扩展透明质酸网络纤维的化学调谐。美国化学会志,142(46),第 19715-19721 页。 24. Yang, J. 、Illeperuma, W. 和 Suo, Z.,2020 年。非弹性增加了水凝胶出现褶皱的临界应变。Extreme Mechanics Letters,第 100966 页。 23. Yang, J. 、Steck, J. 和 Suo, Z.,2020 年。海藻酸盐链通过共价键的凝胶化动力学。Extreme Mechanics Letters,第 100898 页。 22. Yang, J. 、Steck, J.、Bai, R. 和 Suo, Z.,2020 年。拓扑粘附 II。可拉伸粘附。Extreme Mechanics Letters,第 100891 页。 21. Steck, J.、Kim, J.、Yang, J. 、Hassan, S. 和 Suo, Z.,2020 年。拓扑粘附。I。快速且强大的拓扑粘合剂。 Extreme Mechanics Letters,第 100803 页。20. Mu, R.、Yang, J.、Wang, Y.、Wang, Z.、Chen, P.、Sheng, H. 和 Suo, Z.,2020 年。聚合物填充大孔水凝胶可降低摩擦力。Extreme Mechanics Letters,第 100742 页。19. Yang, J.、Bai, R.、Li, J.、Yang, C.、Yao, X.、Liu, Q.、Vlassak, JJ、Mooney, DJ 和 Suo, Z.,2019 年。设计用于干湿粘附的分子拓扑结构。ACS Applied Materials & Interfaces,11(27),第 24802-24811 页。 18. Yang, J. 、Bai, R.、Chen, B. 和 Suo, Z.,2019 年。水凝胶粘附:化学、拓扑和力学的超分子协同作用。Advanced Functional Materials,第 1901693 页。17. Yang, J. 、Jin, L.、Hutchinson, JW 和 Suo, Z.,2019 年。塑性延缓了折痕的形成。固体力学和物理学杂志,123,第 305-314 页。16. Yang, X.#、Yang, J.#、Chen, L. 和 Suo, Z.,2019 年。橡胶网络中的水解裂纹。Extreme Mechanics Letters,第 100531 页。