摘要。本文介绍了使用基于智能手机的计算机视觉技术来诊断手动障碍的经济高效,高效且可访问的解决方案的开发。它突出了使用TOF相机数据与RG数据和机器学习算法相结合的想法,以准确识别四肢和运动,这克服了传统运动识别方法的局限性,改善了康复和降低专业医疗设备的高成本。使用智能手机和先进的计算方法的无处不在,该研究提供了一种新的方法来提高运动障碍诊断的质量和可及性,为未来的研究和在临床实践中的研究和应用提供了有希望的方向。
腹腔镜胆囊切除术 (LC) 是切除胆囊的标准手术。虽然该手术已发展成为一种相对安全且可耐受的日间手术,但有时可能会很困难,并且可能会出现并发症。复杂的胆结石疾病,如胆囊炎或胆结石性胰腺炎,是增加 LC 技术难度的危险因素。虽然可以对手术难度进行术前预测,但围手术期发现可能会令人惊讶。使用基于 AI 的模型了解手术场景的难度对于对手术性能进行基准测试和改进手术室规划非常重要。本研究旨在开发一种深度学习 (DL) 来预测腹腔镜胆囊切除术在特定手术发现上的难度。基于 Nassar 评分使用了难度分级量表。为了训练 DL 网络,从录制的视频中提取了帧。所有帧均标记为“胆囊”难度 1-3 级和“粘连”难度 1-3 级。排除由体外图像组成或胆囊不可见的帧。总共有 26.483 帧。ResNet 用作模型的主干。调整超参数以改善模型结果。多类和二元分类网络都经过了训练。训练用于分类胆囊难度(3 级)的网络比训练用于分类粘连难度的网络表现更好(准确率 74%)。可以对胆囊炎进行分类,准确率为 91%,对简单病例进行分类,准确率为 87%。本研究结果可作为进一步研究 LC 难度分类的起点。这是提高对手术场景理解并为 LC 外科医生提供基准的第一步。
摘要:这项研究深入研究了与云技术相关的安全问题,这危害了我们存储在云中的数据的安全性。尽管它提供了便利的功能,但云技术的广泛采用却大大增加了暴露和对安全威胁的脆弱性。尽管通常认为云技术是安全的,但它仍然包含用户必须保持警惕的固有安全风险。用户对这些风险的认识水平对于缓解潜在的安全漏洞和保护敏感信息至关重要。对云安全措施进行的充分培训和教育可以使用户有能力做出明智的决定,并采取积极的步骤来保护其数据。云环境中的安全事件可能会带来深远的后果,不仅会影响个人用户,还影响组织及其利益相关者。因此,用户需要了解新兴的安全威胁并实施最佳实践,以最大程度地减少其风险的影响。云服务提供商和用户之间的协作工作对于不断改善安全措施并适应不断发展的网络威胁是必要的。通过培养安全意识和主动风险管理的文化,我们可以更好地保护我们的数据并最大程度地利用云技术的好处。关键字:云计算,安全风险,数据存储,安全意识,网络安全。1。简介
它易于使用,并产生几乎实时的结果。您可以迅速迭代设置并较早地识别低电位的潜在客户 - 更快的决定。使用传统方法,知道您是否失败了,需要很长时间(或可能的几周)。使用MT,它通常可以起作用或不起作用,您会很快发现它,因此您决定综合或放弃结构。我们可以使您的答案比合成化合物更快。想筛选配体吗?使用MovableType对其进行测试,您将在几分钟内得到答案。
他学校墙上的绿色斑块。他向老师询问了绿色斑块的情况。老师澄清了那个学生的疑问。现在他能够识别出属于绿色斑块的生物群。在你看来,绿色斑块最有可能是-(用铅笔涂上正确的颜色)-
阿纳塔普尔联合大学附属拉吉夫·甘地纪念工程技术学院(自治)。获得 NBA (TIER-I) 和 NAAC of UGC 认证。新德里,获得 A+ 级认可 UGC-DDU KAUSHAL KENDRA NANDYAL-51850 1,(Estd-1995)
摘要全球供应链的快速扩张导致碳排放和环境问题增加,因此需要采用可持续物流解决方案。本研究探讨了人工智能(AI)在优化运输路线,最大程度地减少燃油消耗和减少供应链的碳足迹方面的作用。AI驱动的路线优化整合了实时交通数据,天气状况和车辆效率,以增强最后一英里的交付和货运管理。机器学习算法进一步有助于预测性维护,机队电气化策略和需求预测,从而确保运营可持续性。这项研究还研究了绿色物流实践,包括使用电力和氢能车辆,多模式运输网络以及循环经济模型,以最大程度地减少环境影响。支持区块链的碳跟踪和AI驱动的可持续性指标可提高碳足迹报告的透明度。此外,该研究强调了监管框架和行业倡议,促进了低排放运输和智能物流中心。的发现表明,AI驱动的物流解决方案可以在实现可持续性目标的同时显着提高效率。但是,必须解决诸如高实施成本,数据隐私问题和基础设施限制之类的挑战。未来的研究应着重于将AI与物联网和区块链整合在一起,以增强可持续供应链中的可追溯性和决策。AI驱动系统提供变革功能该研究得出结论,AI驱动的绿色物流可以彻底改变运输,从而为碳中性和成本效益的全球供应链提供可行的道路。关键字:绿色物流,AI路线优化,可持续运输,减少碳足迹,供应链可持续性和环保物流。引言近几十年来,全球供应链的前所未有的增长彻底改变了贸易,商业和工业。但是,这种快速扩张的环境成本很高,碳排放量增加,资源过多和生态退化的提高。货运运输仅负责全球温室气体(GHG)排放的很大比例[1],并且随着电子商务,城市化和国际贸易的持续增长,这些数字预计将攀升。这种日益增长的环境影响刺激了对可持续物流解决方案的需求,全世界的企业和政府都在寻求创新的方法,以减少碳足迹,同时保持运营效率。推动这一转变的最有希望的进步是将人工智能(AI)整合到物流和供应链管理中。