尽管我被誉为哲学家,但我在研究信息技术的伦理、社会和政治层面时,却越来越倾向于信息技术的科学和工程。我将这种兴趣追溯到与 Batya Friedman 合作的一项关于计算机系统偏见的研究项目(“计算机系统中的偏见”,ACM Trans.信息系统,1996 年 7 月,第340-346 页)。这个项目产生了一个引人注目而又神秘的想法:计算机和信息系统可以体现价值观。我发现这个想法如此引人注目,以至于从那时起它几乎劫持了我的工作道路,迫使我努力应对极其复杂的技术细节。它的神秘之处在于将价值观视为技术的一部分,而研究信息技术的社会、伦理和政治方面的学者和研究人员通常不会采用这种观点。
BATYA FRIEDMAN,PETER H. KAHN,JR. 和ALAN BORNING 华盛顿大学 即将在 P. Zhang 和 D. Galletta(编辑)的《管理信息系统中的人机交互:基础》中发表。M.E. Sharpe,Inc:纽约。 ________________________________________________________________________ 价值敏感设计是一种以理论为基础的技术设计方法,它在整个设计过程中以原则性和全面的方式考虑人的价值。它采用综合和迭代的三部分方法,包括概念、实证和技术调查。我们通过三个案例研究来阐明价值敏感设计。第一项研究涉及网络浏览器 cookie 的信息和控制,涉及知情同意的价值。第二项研究涉及在办公环境中使用高清等离子显示器为外界提供“窗口”,涉及公共空间中身体和心理健康和隐私的价值。第三项研究涉及一个综合的土地使用、交通和环境模拟系统,以支持公众对重大土地使用和交通决策的审议和辩论,涉及公平、问责和对民主进程的支持等价值观,以及不同利益相关者可能持有的各种价值观,如环境可持续性、商业扩展机会或步行邻居。
[1] Stuart Allan。2011 年。《引言:数字时代的科学新闻》。《新闻学》12,7(2011 年 10 月),771–777。https://doi.org/10.1177/1464884911412688 [2] Josh Anderson 和 Anthony Dudo。2023 年。《来自战壕的观点:与记者关于报道科学新闻的访谈》。《科学传播》(2023 年 1 月),107554702211491。https://doi.org/10.1177/10755470221149156 [3] Aviv Barnoy 和 Zvi Reich。2019 年。验证的时间、原因、方式和结果。新闻研究 20, 16 (2019 年 12 月),2312–2330。https://doi.org/10.1080/1461670X.2019.1593881 出版商:Routledge _eprint:https://doi.org/10.1080/1461670X.2019.1593881。[4] Emily Bender 和 Chirag Shah。2022 年。无所不知的机器是一种幻想。https://iai.tv/articles/all-knowing-machines-are-a-fantasy-auid-2334 [5] Emily M. Bender。2022 年。《华盛顿邮报》对 ChatGPT 的炒作。 https://medium.com/@emilymenonbender/chatgpt-hype-in-the-washington-post- c4e1355ed31b [6] Emily M. Bender。2022 年。纽约时报杂志上的 AI 文章:抵制留下深刻印象的冲动。https://medium.com/@emilymenonbender/on-nyt-magazine- on-ai-resist-the-urge-to-be-impressed-3d92fd9a0edd [7] Emily M. Bender、Timnit Gebru、Angelina McMillan-Major 和 Shmargaret Shmitchell。2021 年。论随机鹦鹉的危险:语言模型会太大吗?。在 2021 年 ACM 公平、问责和透明度会议论文集上。ACM,加拿大虚拟活动,610–623。 https://doi.org/10.1145/3442188.3445922 [8] Deborah Blum。2021 年。科学新闻事业发展。《科学》372,6540(2021 年 4 月)。https://doi.org/10.1126/science.abj0434 [9] Joshua A. Braun 和 Jessica L. Eklund。2019 年。假新闻,真钱:广告技术平台、利润驱动的骗局和新闻业务。《数字新闻》7,1(2019 年 1 月),1-21。https://doi.org/10.1080/21670811.2018.1556314 [10] J Scott Brennen、Philip N Howard 和 Rasmus Kleis Nielsen。 2018. 行业主导的辩论:英国媒体如何报道人工智能。(2018 年)。[11] Michael Brüggemann、Ines Lörcher 和 Stefanie Walter。2020. 后常态科学传播:探索科学与新闻业模糊的界限。科学传播杂志 19, 3 (2020 年 6 月)。https://doi.org/10.22323/2.19030202 [12] Madalina Busuioc。2021. 负责任的人工智能:让算法承担责任。公共管理评论 81, 5 (2021)。https://doi.org/10.1111/puar.13293 [13] Tania Cerquitelli、Daniele Quercia 和 Frank Pasquale(编辑)。2017. 大数据和小数据的透明数据挖掘。大数据研究,第 1 卷。 32. Springer International Publishing,Cham。https://doi.org/10.1007/978-3-319-54024-5 [14] Mark Deuze 和 Charlie Beckett。2022 年。想象力、算法和新闻:培养新闻业的人工智能素养。数字新闻 10,10(2022 年 11 月),1913-1918 年。https://doi.org/10.1080/21670811.2022.2119152 [15] Nicholas Diakopoulos。2015 年。算法问责制。数字新闻 3,3(2015 年 5 月)。https://doi.org/10.1080/21670811.2014.976411 [16] Nicholas Diakopoulos,Daniel Trielli 和 Grace Lee。2021 年。通过半自动化新闻发现工具理解和支持新闻实践。ACM 人机交互论文集 5,CSCW2(2021 年 10 月),1-30。https://doi.org/10.1145/3479550 [17] Wolfgang Donsbach。2012 年。记者的角色认知。《国际传播百科全书》,Wolfgang Donsbach(编辑)。John Wiley & Sons, Ltd,英国奇切斯特,wbiecj010.pub2。https://doi.org/10.1002/9781405186407.wbiecj010.pub2 [18] Sharon Dunwoody。2021 年。科学新闻:数字时代的前景。摘自《劳特利奇公共科学技术传播手册》(第 3 版)。劳特利奇。[19] David Freeman Engstrom、Daniel E. Ho、Catherine M. Sharkey 和 Mariano-Florentino Cuéllar。2020 年。算法政府:联邦行政机构中的人工智能。技术报告。美国行政会议。https://www.ssrn.com/abstract=3551505 [20] Declan Fahy 和 Matthew Nisbet。2011 年。在线科学记者:角色转变和新兴实践。新闻学 12,7(2011 年 10 月)。https://doi.org/10.1177/1464884911412697 [21] Batya Friedman、Peter Kahn 和 Alan Borning。2002 年。价值敏感设计:理论与方法。华盛顿大学技术报告 2 (2002),第 12 页。出版商:Citeseer。[22] Oscar H. Gandy。1980 年。健康信息:补贴新闻。媒体、文化与社会 2,2(1980 年 4 月)。https://doi.org/10.1177/016344378000200201 [23] Tony Harcup 和 Deirdre O'Neill。2017 年。什么是新闻?:重新审视新闻价值(再次)。新闻研究 18,12(2017 年 12 月),1470–1488。 https://doi.org/10.1080/1461670X.2016.1150193 [24] Ziwei Ji、Nayeon Lee、Rita Frieske、Tizheng Yu、Dan Su、Yan Xu、Etsuko Ishii、Yejin Bang、Andrea Madotto 和 Pascale Fung。 2022.自然语言生成中的幻觉调查。计算。调查(2022 年 11 月)。 https://doi.org/10.1145/3571730 [25] Bronwyn Jones、Rhianne Jones 和 Ewa Luger。 2022.人工智能“无处不在”:解决公共服务新闻中的人工智能清晰度问题。数字新闻 10, 10(2022 年 11 月),1731–1755。 https://doi.org/10.1080/21670811.2022.2145328 [26] Sayash Kapoor 和 Arvind Narayanan。2022 年。人工智能新闻业需要警惕的 18 个陷阱。https://aisnakeoil.substack.com/p/eighteen-pitfalls-to-beware-of-in [27] Percy Liang、Rishi Bommasani、Kathleen Creel 和 Rob Reich。2022 年。现在是制定发布基础模型的社区规范的时候了。https://hai.stanford.edu/news/time-now-develop-community-norms-release-foundation-modelsJohn Wiley & Sons, Ltd,英国奇切斯特,wbiecj010.pub2。https://doi.org/10.1002/9781405186407.wbiecj010.pub2 [18] Sharon Dunwoody。2021 年。科学新闻:数字时代的前景。载于《劳特利奇科学技术公共传播手册》(第 3 版)。劳特利奇。[19] David Freeman Engstrom、Daniel E. Ho、Catherine M. Sharkey 和 Mariano-Florentino Cuéllar。2020 年。算法政府:联邦行政机构中的人工智能。技术报告。美国行政会议。https://www.ssrn.com/abstract=3551505 [20] Declan Fahy 和 Matthew Nisbet。2011 年。在线科学记者:角色转变和新兴实践。新闻学 12,7 (2011 年 10 月)。https://doi.org/10.1177/1464884911412697 [21] Batya Friedman、Peter Kahn 和 Alan Borning。2002 年。价值敏感设计:理论与方法。华盛顿大学技术报告 2 (2002),12。出版商:Citeseer。[22] Oscar H. Gandy。1980 年。健康信息:补贴新闻。媒体、文化与社会 2,2 (1980 年 4 月)。https://doi.org/10.1177/016344378000200201 [23] Tony Harcup 和 Deirdre O'Neill。2017 年。什么是新闻?:重新审视新闻价值(再次)。新闻研究 18, 12(2017 年 12 月),1470–1488。 https://doi.org/10.1080/1461670X.2016.1150193 [24] Ziwei Ji、Nayeon Lee、Rita Frieske、Tizheng Yu、Dan Su、Yan Xu、Etsuko Ishii、Yejin Bang、Andrea Madotto 和 Pascale Fung。 2022.自然语言生成中的幻觉调查。计算。调查(2022 年 11 月)。 https://doi.org/10.1145/3571730 [25] Bronwyn Jones、Rhianne Jones 和 Ewa Luger。 2022.人工智能“无处不在”:解决公共服务新闻中的人工智能清晰度问题。数字新闻 10,10(2022 年 11 月),1731–1755 年。https://doi.org/10.1080/21670811.2022.2145328 [26] Sayash Kapoor 和 Arvind Narayanan。2022 年。人工智能新闻业需要警惕的 18 个陷阱。https://aisnakeoil.substack.com/p/eighteen-pitfalls-to-beware-of-in [27] Percy Liang、Rishi Bommasani、Kathleen Creel 和 Rob Reich。2022 年。现在是制定发布基础模型的社区规范的时候了。https://hai.stanford.edu/news/time-now-develop-community-norms-release-foundation-modelsJohn Wiley & Sons, Ltd,英国奇切斯特,wbiecj010.pub2。https://doi.org/10.1002/9781405186407.wbiecj010.pub2 [18] Sharon Dunwoody。2021 年。科学新闻:数字时代的前景。载于《劳特利奇科学技术公共传播手册》(第 3 版)。劳特利奇。[19] David Freeman Engstrom、Daniel E. Ho、Catherine M. Sharkey 和 Mariano-Florentino Cuéllar。2020 年。算法政府:联邦行政机构中的人工智能。技术报告。美国行政会议。https://www.ssrn.com/abstract=3551505 [20] Declan Fahy 和 Matthew Nisbet。2011 年。在线科学记者:角色转变和新兴实践。新闻学 12,7 (2011 年 10 月)。https://doi.org/10.1177/1464884911412697 [21] Batya Friedman、Peter Kahn 和 Alan Borning。2002 年。价值敏感设计:理论与方法。华盛顿大学技术报告 2 (2002),12。出版商:Citeseer。[22] Oscar H. Gandy。1980 年。健康信息:补贴新闻。媒体、文化与社会 2,2 (1980 年 4 月)。https://doi.org/10.1177/016344378000200201 [23] Tony Harcup 和 Deirdre O'Neill。2017 年。什么是新闻?:重新审视新闻价值(再次)。新闻研究 18, 12(2017 年 12 月),1470–1488。 https://doi.org/10.1080/1461670X.2016.1150193 [24] Ziwei Ji、Nayeon Lee、Rita Frieske、Tizheng Yu、Dan Su、Yan Xu、Etsuko Ishii、Yejin Bang、Andrea Madotto 和 Pascale Fung。 2022.自然语言生成中的幻觉调查。计算。调查(2022 年 11 月)。 https://doi.org/10.1145/3571730 [25] Bronwyn Jones、Rhianne Jones 和 Ewa Luger。 2022.人工智能“无处不在”:解决公共服务新闻中的人工智能清晰度问题。数字新闻 10,10 (2022 年 11 月),1731–1755 年。https://doi.org/10.1080/21670811.2022.2145328 [26] Sayash Kapoor 和 Arvind Narayanan。2022 年。人工智能新闻业需要警惕的 18 个陷阱。https://aisnakeoil.substack.com/p/eighteen-pitfalls-to-beware-of-in [27] Percy Liang、Rishi Bommasani、Kathleen Creel 和 Rob Reich。2022 年。现在是制定发布基础模型的社区规范的时候了。https://hai.stanford.edu/news/time-now-develop-community-norms-release-foundation-models和 Alan Borning。2002 年。价值敏感设计:理论与方法。华盛顿大学技术报告 2(2002 年),12。出版商:Citeseer。[22] Oscar H. Gandy。1980 年。健康信息:补贴新闻。媒体、文化与社会 2,2(1980 年 4 月)。https://doi.org/10.1177/016344378000200201 [23] Tony Harcup 和 Deirdre O'Neill。2017 年。什么是新闻?:重新审视新闻价值观(再次)。新闻研究 18,12(2017 年 12 月),1470–1488。 https://doi.org/10.1080/1461670X.2016.1150193 [24] Ziwei Ji、Nayeon Lee、Rita Frieske、Tizheng Yu、Dan Su、Yan Xu、Etsuko Ishii、Yejin Bang、Andrea Madotto 和 Pascale Fung。 2022.自然语言生成中的幻觉调查。计算。调查(2022 年 11 月)。 https://doi.org/10.1145/3571730 [25] Bronwyn Jones、Rhianne Jones 和 Ewa Luger。 2022.人工智能“无处不在”:解决公共服务新闻中的人工智能清晰度问题。数字新闻 10, 10(2022 年 11 月),1731–1755。 https://doi.org/10.1080/21670811.2022.2145328 [26] Sayash Kapoor 和 Arvind Narayanan。2022 年。人工智能新闻业需要警惕的 18 个陷阱。https://aisnakeoil.substack.com/p/eighteen-pitfalls-to-beware-of-in [27] Percy Liang、Rishi Bommasani、Kathleen Creel 和 Rob Reich。2022 年。现在是制定发布基础模型的社区规范的时候了。https://hai.stanford.edu/news/time-now-develop-community-norms-release-foundation-models和 Alan Borning。2002 年。价值敏感设计:理论与方法。华盛顿大学技术报告 2(2002 年),12。出版商:Citeseer。[22] Oscar H. Gandy。1980 年。健康信息:补贴新闻。媒体、文化与社会 2,2(1980 年 4 月)。https://doi.org/10.1177/016344378000200201 [23] Tony Harcup 和 Deirdre O'Neill。2017 年。什么是新闻?:重新审视新闻价值观(再次)。新闻研究 18,12(2017 年 12 月),1470–1488。 https://doi.org/10.1080/1461670X.2016.1150193 [24] Ziwei Ji、Nayeon Lee、Rita Frieske、Tizheng Yu、Dan Su、Yan Xu、Etsuko Ishii、Yejin Bang、Andrea Madotto 和 Pascale Fung。 2022.自然语言生成中的幻觉调查。计算。调查(2022 年 11 月)。 https://doi.org/10.1145/3571730 [25] Bronwyn Jones、Rhianne Jones 和 Ewa Luger。 2022.人工智能“无处不在”:解决公共服务新闻中的人工智能清晰度问题。数字新闻 10, 10(2022 年 11 月),1731–1755。 https://doi.org/10.1080/21670811.2022.2145328 [26] Sayash Kapoor 和 Arvind Narayanan。2022 年。人工智能新闻业需要警惕的 18 个陷阱。https://aisnakeoil.substack.com/p/eighteen-pitfalls-to-beware-of-in [27] Percy Liang、Rishi Bommasani、Kathleen Creel 和 Rob Reich。2022 年。现在是制定发布基础模型的社区规范的时候了。https://hai.stanford.edu/news/time-now-develop-community-norms-release-foundation-models
[1] Ryan S. Baker。2024。大数据和教育(第8版)。宾夕法尼亚州费城宾夕法尼亚大学。 [2] Ryan S. Baker和Aaron Hawn。2022。教育算法偏见。国际人工智能杂志教育杂志(2022),1-41。[3] Solon Barocas,Andrew D Selbst和Manish Raghavan。2020。反事实解释和主要原因背后的隐藏假设。在2020年公平,问责制和透明度会议的会议记录中。80–89。[4] Alex J Bowers和Xiaoliang Zhou。2019。曲线下的接收器操作特征(ROC)区域(AUC):一种评估教育结果预测指标准确性的诊断措施。受风险的学生教育杂志(JESPAR)24,1(2019),20-46。[5] Oscar Blessed Deho,Lin Liu,Jiuyong Li,Jixue Liu,Chen Zhan和Srecko Joksimovic。2024。过去!=未来:评估数据集漂移对学习分析模型的公平性的影响。IEEE学习技术交易(2024)。[6] Olga V Demler,Michael J Pencina和Ralph B D'Agostino Sr. 2012。滥用DELONG测试以比较嵌套模型的AUC。医学中的统计数据31,23(2012),2577–2587。[7] Batya Friedman和Helen Nissenbaum。1996。计算机系统中的偏差。信息系统(TOIS)的ACM交易14,3(1996),330–347。[8]乔什·加德纳,克里斯托弗·布鲁克斯和瑞安·贝克。2019。225–234。通过切片分析评估预测学生模型的公平性。在第9届学习分析与知识国际会议论文集。[9]LászlóA Jeni,Jeffrey F Cohn和Fernando de la Torre。2013。面对不平衡的数据:使用性能指标的建议。在2013年,俄亥俄州情感计算和智能互动会议上。IEEE,245–251。 [10] Weijie Jiang和Zachary a Pardos。 2021。 在学生等级预测中迈向公平和算法公平。 在2021年AAAI/ACM关于AI,伦理和社会的会议上。 608–617。 [11]RenéFKizilcec和Hansol Lee。 2022。 教育算法公平。 在教育中人工智能的伦理学中。 Routledge,174–202。 [12]JesúsFSalgado。 2018。 将正常曲线(AUC)下的面积转换为Cohen的D,Pearson的R PB,Ordds-Ratio和自然对数赔率比率:两个转换表。 欧洲心理学杂志适用于法律环境10,1(2018),35-47。 [13] Lele Sha,Mladen Rakovic,Alexander Whitelock-Wainwright,David Carroll,Victoria M Yew,Dragan Gasevic和Guanliang Chen。 2021。 在自动教育论坛帖子中评估算法公平性。 教育中的人工智能:第22届国际会议,AIED 2021,荷兰乌得勒支,6月14日至18日,2021年,第I部分。 Springer,381–394。 2024。 2023。 2018。IEEE,245–251。[10] Weijie Jiang和Zachary a Pardos。2021。在学生等级预测中迈向公平和算法公平。在2021年AAAI/ACM关于AI,伦理和社会的会议上。608–617。[11]RenéFKizilcec和Hansol Lee。2022。教育算法公平。在教育中人工智能的伦理学中。Routledge,174–202。[12]JesúsFSalgado。2018。将正常曲线(AUC)下的面积转换为Cohen的D,Pearson的R PB,Ordds-Ratio和自然对数赔率比率:两个转换表。欧洲心理学杂志适用于法律环境10,1(2018),35-47。[13] Lele Sha,Mladen Rakovic,Alexander Whitelock-Wainwright,David Carroll,Victoria M Yew,Dragan Gasevic和Guanliang Chen。2021。在自动教育论坛帖子中评估算法公平性。教育中的人工智能:第22届国际会议,AIED 2021,荷兰乌得勒支,6月14日至18日,2021年,第I部分。Springer,381–394。2024。2023。2018。[14]Valdemaršvábensk`Y,MélinaVerger,Maria Mercedes T Rodrigo,Clarence James G Monterozo,Ryan S Baker,Miguel Zenon Nicanor LeriasSaavedra,SébastienLallé和Atsushi Shimada。在预测菲律宾学生的学习成绩的模型中评估算法偏见。在第17届国际教育数据挖掘会议上(EDM 2024)。[15]MélinaVerger,SébastienLallé,FrançoisBouchet和Vanda Luengo。您的模型是“ MADD”吗?一种新型指标,用于评估预测学生模型的算法公平性。在第16届国际教育数据挖掘会议上(EDM 2023)。[16] Sahil Verma和Julia Rubin。公平定义解释了。在国际软件公平研讨会的会议记录中。1-7。[17] Zhen Xu,Joseph Olson,Nicole Pochinki,Zhijian Zheng和Renzhe Yu。2024。上下文很重要,但是如何?课程级别的性能和公平转移的相关性在预测模型转移中。在第14届学习分析和知识会议论文集。713–724。[18] Andres Felipe Zambrano,Jiayi Zhang和Ryan S Baker。2024。在贝叶斯知识追踪和粗心大意探测器上研究算法偏见。在第14届学习分析和知识会议论文集。349–359。
[4] Abeba Birhane、William Isaac、Vinodkumar Prabhakaran、Mark Diaz、Madeleine Clare Elish、Iason Gabriel 和 Shakir Mohammed。 2022.权力归人民?参与式人工智能的机遇与挑战。算法、机制和优化中的公平与访问(美国弗吉尼亚州阿灵顿)(EAAMO '22)。美国计算机协会,纽约,纽约州,美国,第 6 篇文章,8 页。 https://doi.org/10.1145/3551624.3555290 [5] Rishi Bommasani、Drew A. Hudson、Ehsan Adeli、Russ Altman、Simran Arora、Sydney von Arx、Michael S. Bernstein、Jeannette Bohg、Anthony Bosselut 等人。 2021. 论基础模式的机遇与风险。 arXiv 预印本 arXiv:2108.07258(2021)。 https://crfm.stanford.edu/assets/report.pdf [6] Zalan Borsos、Raphael Marinier、Damien Vincent、Eugene Kharitonov、Oliver Pietquin、Matt Sharifi、Oliver Teboul、David Grangier、Marco Tagliasacchi 和 Neil Zeghidour。 2022.AudioLM:一种用于音频生成的语言建模方法。 arXiv:2209.03143 [cs.SD] [7] 马修·伯特尔 (Matthew Burtell) 和托马斯·伍德赛德 (Thomas Woodside)。 2023.人工智能影响力:人工智能驱动的说服分析。 http://arxiv.org/abs/2303.08721 arXiv:2303.08721 [cs]。 [8] C2PA。 2024. 引入官方内容凭证图标 - C2PA — c2pa.org。 https://c2pa.org/post/contentcredentials/。 [访问日期:2024 年 1 月 17 日]。 [9] 维多利亚·克拉克、弗吉尼亚·布劳恩和尼基·海菲尔德。 2015.主题分析。定性心理学:研究方法实用指南 222,2015 (2015),248。[10] Joshua Cloudy、Jaime Banks、Nicholas David Bowman。 2023. The Str(AI)ght Scoop:人工智能线索减少对敌对媒体偏见的看法。数字新闻 11,9(2023 年 10 月),1577–1596。 https://doi.org/10.1080/21670811.2021.1969974 [11] 谷歌DeepMind。 2024.合成器ID。 https://deepmind.google/technologies/synthid/。访问日期:2024-1-1 [12] Upol Ehsan 和 Mark O. Riedl。 2020.以人为本的可解释人工智能:走向反思性社会技术方法。在 HCI International 2020 - 最新论文:多模态性和智能中,Constantine Stephanidis、Masaaki Kurosu、Helmut Degen 和 Lauren Reinerman-Jones(编辑)。 Springer International Publishing,Cham,449-466。 [13] Passant Elagroudy、Jie Li、Kaisa Vanänen、Paul Lukowicz、Hiroshi Ishii、Wendy Mackay、Elizabeth Churchill、Anicia Peters、Antti Oulasvirta、Rui Prada、Alexandra Diening、Giulia Barbareschi、Agnes Gruenerbl、Midori Kawaguchi、Abdallah El Ali、Fiona Draxler、Robin Welsch 和 Albrecht dt。 2024 年 CHI 计算机系统人为因素会议(美国夏威夷檀香山)(CHI '24 EA)的扩展摘要 https://doi.org/10.31234/osf.io/v4mfz [14] Ziv Epstein、Mengying C Fang、Antonio A Arechar 和 David G Rand。1996。价值敏感设计。互动 3、6(1996 年 12 月)、16–23。 https://doi.org/10.1145/242485.242493 [16] Ozlem Ozmen Garibay、Brent Winslow、Salvatore Andolina、Margherita Antona、Anja Bodenschatz、Constantinos Coursaris、Gregory Falco、Stephen M. Fiore、Ivan Garibay、Keri Grieman、John C. Havens、Marina Jirotka、 Hernisa Kacorri、Waldemar Karwowski、Joe Kider、Joseph Konstan、Sean Koon、Monica Lopez-Gonzalez、Iliana Maifeld-Carucci、Sean McGregor、Gavriel Salvendy、Ben Shneiderman、Constantine Stephanidis、Christina Strobel、Carolyn Ten Holter 和 Wei Xu。 2023. 以人为本的六大人工智能挑战。国际人机交互杂志 39,3 (2023),391–437。https://doi.org/10.1080/10447318.2022.2153320 arXiv:https://doi.org/10.1080/10447318.2022.2153320 [17] Colin M. Gray、Cristiana Santos、Nataliia Bielova、Michael Toth 和 Damian Clifford。2021. 黑暗模式和同意横幅的法律要求:互动批评视角。在 Proc. CHI '21 中。ACM,日本横滨,1-18。 https://doi.org/10.1145/3411764.3445779 [18] Matthew Groh、Aruna Sankaranarayanan、Nikhil Singh、Dong Young Kim、Andrew Lippman 和 Rosalind Picard。2023 年。人类对文字记录、音频和视频中的政治言论 Deepfakes 的检测。arXiv:2202.12883 [cs.HC] [19] Philipp Hacker、Andreas Engel 和 Marco Mauer。2023 年。监管 ChatGPT 和其他大型生成式 AI 模型。在 2023 年 ACM 公平、问责和透明度会议论文集(美国伊利诺伊州芝加哥)(FAccT '23)中。计算机协会,美国纽约州纽约,1112-1123。 https://doi.org/10.1145/3593013.3594067 [20] Geoff Hart。1996 年。“五个 W”:受众分析新任务的旧工具。技术交流 43,2(1996 年),139-145。http://www.jstor.org/stable/43088033 [21] Natali Helberger 和 Nicholas Diakopoulos。2023 年。ChatGPT 和 AI 法案。Internet Pol. Rev. 12,1(2023 年 2 月)。[22] Jonathan Ho、William Chan、Chitwan Saharia、Jay Whang、Ruiqi Gao、Alexey Gritsenko、Diederik P Kingma、Ben Poole、Mohammad Norouzi、David J Fleet 等人。2022 年。Imagen 视频:使用扩散模型生成高清视频。 arXiv:2210.02303 [cs.CV] [23] Mohammad Hosseini、David B Resnik 和 Kristi Holmes。2023 年。在撰写学术手稿时披露使用人工智能工具的伦理问题。研究伦理 19,4 (2023),449–465。https://doi.org/10.1177/17470161231180449 arXiv:https://doi.org/10.1177/17470161231180449 [24] Nanna Inie、Jeanette Falk 和 Steve Tanimoto。2023 年。设计参与式人工智能:创意专业人士对生成式人工智能的担忧和期望。在 2023 年 CHI 计算系统人为因素会议的扩展摘要中。1–8。 [25] Chenyan Jia、Alexander Boltz、Angie Zhang、Anqing Chen 和 Min Kyung Lee。2022 年。理解算法标签与社区标签对超党派错误信息感知准确性的影响。Proc. ACM Hum.-Comput. Interact。6,CSCW2,第 371 条(2022 年 11 月),27 页。https://doi.org/10.1145/3555096 [26] 贾长江、蔡岩、余元德和谢天浩。2016 年。5W+1H 模式:系统映射研究视角及云软件测试案例研究。系统与软件杂志 116(2016 年),206-219。https://doi.org/10.1016/j.jss.2015.01.058 [27] Michael H. Kernis 和 Brian M. Goldman。2006 年。真实性的多组分概念化:理论与研究。实验社会心理学进展。第 38 卷。爱思唯尔,283-357。 https://doi.org/10.1016/S0065-2601(06)38006-9