摘要:密钥蒸馏,也称为经典后处理,在量子密钥分发 (QKD) 协议中起着关键作用。密钥蒸馏包含许多子程序,因此对于研究界以外的人士来说,分析其整体安全影响可能具有挑战性。在本文中,我们从安全的角度阐明了密钥蒸馏阶段在 QKD 中的作用。我们首先分别分析密钥蒸馏阶段的不同组成部分,然后检查整个过程。然后,我们计算生成的密钥的位强度,假设攻击者正在执行拦截和重发攻击。为了进行分析,我们采用与诱饵状态 BB84 协议相关的实用密钥蒸馏实现作为案例研究。我们的研究结果表明,密钥蒸馏阶段后的最终密钥的安全性取决于几个因素。这些包括实施子程序的理论安全性、整个过程中的总信息泄漏以及子程序参数的选择。根据这些假设,我们可以从每 1000 位经过密钥提炼程序的密钥中提炼出 287 个安全位。
在BB84方案中,使用两个偏振滤镜的方向(例如0、45、90、135度)将正常信息精确地转换为光子或量子颗粒。这些偏振滤波器是水平和垂直滤波器,它们朝不同方向提供了输出。````这些光子是在两个私人量子通道中传输的,这些光子永远不会让窃听器检查数据,如果他找到数据,不确定性会导致数据更改并使接收者注意到数据不一致。传输后,接收器再次使用偏振滤波器获取数据。接收到的数据将不匹配,但可以在交叉检查发件人提供的两极分化过滤器后进行验证。数据中的其余部分将成为密钥。此过程中有四个步骤,即量子交换,关键转移,信息和解和隐私放大。
摘要。随着互联网的不断扩大,对有效的多DATA传输和提高安全性的需求变得越来越强大。但是,传统的点对点系统在满足多个用户之间链接链接的不断增长的要求方面缺乏。这是混合量子 - 古典网络(一种实用且经济上可行的解决方案),在有限的资源框架内为更大的用户群服务。本文探讨了两种构建方案,即BB84和B92,这些方案是这些混合网络的功能的基础。基于它们的基本逻辑和传输模拟的这些协议的检查和比较将为建立混合量子古典网络奠定坚实的基础。将详细阐述混合量子 - 古典网络的概念,主要关注其在光纤中的性能,以模拟现实生活中的数据传输。的目的是为建立量子古典混合网络提供敏锐的建议,并在BB84和B92协议之间存在明显的差异。实际上,本文的目的是在满足数据传输和安全性通过量子古典混合动力网络的未来需求的旅程中成为宝贵的资源。它强调了从理论到实践的过渡,将量子协议变成了我们日常数字互动中的有形性。
值得注意的是,这些看似负面的特征可以产生积极作用,为某些密码和信息安全问题提供宝贵的益处,而在某些情况下,传统信号无法实现这些益处。例如,直观地讲,在远距离通信中,(b) 意味着任何试图在途中窃听消息的行为都必须在信号上留下痕迹,然后原则上可以通过接收方与发送方(公开)讨论的行为检测到。事实证明,这可用于提供可证明安全的通信,以防止窃听。另一方面,传统消息总是可以在途中被读取,并完好无损地发送给接收方。此外,事实证明(参见下文),(a) 对通信者的影响可以通过适当巧妙(非显而易见)的协议来规避,该协议涉及他们之间的进一步(公开)讨论。
光同源性检测已被广泛用于测量字段正交的连续变量(CV)量子信息处理。在本文中,我们探讨了在“光子计数”模式下操作共轭同型检测系统以实现离散变量(DV)量子密钥分布(QKD)的可能性。共轭同源检测系统由光束分离器组成,然后是两个光学同伴检测器,可以同时测量传入量子状态的一对共轭四倍体x和p。在经典电动力学中,x 2 + p 2与输入光的能量(光子数)成正比。在量子操作中,X和P不上交,因此上述光子数测量本质上是嘈杂的。这意味着QKD标准安全证明的盲目应用可能会导致模拟性能。我们通过利用拟议检测方案的两个特殊特征来克服这一障碍。首先,外部对手不能操纵与真空浮游相关的基本检测噪声。第二,重建接收器末端的光子数分布的能力可以对对手的可能攻击施加其他约束。为例,我们使用共轭同胞检测来研究BB84 QKD的安全性,并通过数值模拟评估其性能。这项研究可以基于基于单光子检测和基于相干检测的CV-QKD的良好DV-QKD的互补,为新的QKD方案开辟了大门。
这项研究历时五年,深入探讨了这种融合对网络安全的影响,特别关注人工智能/自然语言处理 (NLP) 模型和量子加密协议,特别是 BB84 方法和特定的 NIST 批准算法。该研究利用 Python 和 C++ 作为主要计算工具,采用“红队”方法,模拟潜在的网络攻击来评估量子安全措施的稳健性。为期 12 个月的初步研究奠定了基础,本研究旨在在此基础上进行扩展,旨在将理论见解转化为可操作的现实世界网络安全解决方案。该研究位于牛津大学技术区,受益于最先进的基础设施和丰富的协作环境。该研究的总体目标是确保随着数字世界向量子增强操作过渡,它仍然能够抵御人工智能驱动的网络威胁。该研究旨在通过迭代测试、反馈集成和持续改进来促进更安全、量子就绪的数字未来。研究结果旨在广泛传播,确保知识惠及学术界和全球
量子力学效应使得构建经典上不可能实现的密码原语成为可能。例如,量子复制保护允许以量子状态对程序进行编码,这样程序可以被评估,但不能被复制。许多这样的密码原语都是双方协议,其中一方 Bob 具有完整的量子计算能力,而另一方 Alice 只需向 Bob 发送随机的 BB84 状态。在这项工作中,我们展示了如何将此类协议一般转换为 Alice 完全经典的协议,假设 Bob 无法有效解决 LWE 问题。具体而言,这意味着 (经典) Alice 和 (量子) Bob 之间的所有通信都是经典的,但他们仍然可以使用如果双方都是经典的,则不可能实现的密码原语。我们应用此转换过程来获得具有经典通信的量子密码协议,以实现不可克隆的加密、复制保护、加密数据计算和可验证的盲委托计算。我们成果的关键技术要素是经典指令并行远程 BB84 状态准备协议。这是 (经典) Alice 和 (量子多项式时间) Bob 之间的多轮协议,允许 Alice 证明 Bob 必须准备了 n 个均匀随机的 BB84 状态(直到他的空间上的基础发生变化)。虽然以前的方法只能证明一或两个量子比特状态,但我们的协议允许证明 BB84 状态的 n 倍张量积。此外,Alice 知道 Bob 准备了哪些特定的 BB84 状态,而 Bob 自己不知道。因此,该协议结束时的情况 (几乎) 等同于 Alice 向 Bob 发送 n 个随机 BB84 状态的情况。这使我们能够以通用和模块化的方式用我们的远程状态准备协议替换现有协议中准备和发送 BB84 状态的步骤。
摘要 当所选协议缺乏损失容忍度时,信号丢失会对量子密码学的安全性构成重大威胁。在量子位置验证 (QPV) 协议中,即使相对较小的丢失率也会危及安全性。因此,目标是找到在实际可实现的丢失率下仍能保持安全的协议。在这项工作中,我们修改了 QPV 协议的通常结构,并证明这种修改使验证者和证明者之间潜在的高传输丢失对于一类协议而言与安全性无关,该类协议包括受 BB84 协议 ( QPV f BB84 ) 启发的实用候选协议。这种修改涉及光子存在检测、证明者的短暂时间延迟以及在继续之前进行游戏的承诺,将总体丢失率降低到仅证明者的实验室。经过调整的协议 c- QPV f BB84 随后成为一种具有强大安全性保证的实用 QPV 协议,即使面对使用自适应策略的攻击者也是如此。由于验证者和证明者之间的丢失率主要由他们之间的距离决定,因此可以在更长的距离上实现安全的 QPV。我们还展示了所需光子存在检测的可能实现,使 c-QPV f BB84 成为解决 QPV 中所有主要实际问题的协议。最后,我们讨论了实验方面并给出了参数估计。
