摘要:本研究提出将基于 BB84 协议的量子密钥分发 (QKD) 与改进的逻辑映射 (ILM) 相结合,以提高数据传输的安全性。该方法将 BB84 的量子密钥形成与 ILM 加密相结合。这种组合创建了一个额外的安全层,默认情况下,BB84 上的操作只是 XOR 替换,而 ILM 的加入会在量子密钥上创建排列操作。实验使用多种量子测量进行测量,例如量子比特误码率 (QBER)、极化误码率 (PER)、量子保真度 (QF)、窃听检测 (ED) 和基于纠缠的检测 (EDB),以及经典密码分析,例如比特误码率 (BER)、熵、直方图分析、归一化像素变化率 (NPCR) 和统一平均变化强度 (UACI)。结果表明,该方法获得了令人满意的结果,特别是QF和BER达到了完美的水平,EBD也达到了0.999。
为了安全地传递信息,信息的发送者和接收者需要拥有一个共享的密钥。量子密钥分发 (QKD) 是一种为此而提出的方案,它利用了量子力学定律。用户 Alice 和 Bob 通过量子信道以纠缠量子比特的形式交换量子信息,并通过经典信道交换测量信息。成功的 QKD 算法将确保当窃听者可以访问量子和经典信息信道时,他们无法推断出密钥,并且会被密钥生成器检测到。本文将介绍量子密钥分发,并解释使用纠缠贝尔态实现的 QKD 算法的模拟。将提出的 T22 协议与更常见的 BB84 QKD 协议进行了比较。结果表明,使用 T22 协议生成长度为 m 位的密钥所需的时间是 BB84 的 3 倍,但 T22 协议的安全性是 BB84 的 6 倍。
13 讲座 13:经典密码学和量子密码学 57 13.1 经典密码学主题. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ... ................................................................................................................................................................... 62 13.4.1 BB84 协议 ....................................................................................................................................................................... 62
在具有诱饵状态的BB84协议中,在量子比特传输过程中引入了附加状态 这些诱饵状态被用作安全措施来检测窃听并增强QKD过程的安全性
A. BB84协议和无条件安全查理·贝内特(Charles H.在此协议中,两个主角爱丽丝和鲍勃使用两个通信通道:一个量子通道和另一个经典通道。量子通道允许必须非常弱的量子对象传输量子效应。窃听者,即夏娃,尽管量子通道的性质限制了她的动作,但应该完全访问此量子通道。这些量子对象的制备方式是,夏娃暂定获取信息将根据量子力学诱导,通过扰动爱丽丝和鲍勃可以通过经典通道比较通信来衡量的信号。
第一个QKD协议是由Bennett和Brass-Ard在1984年提出的[3],称为BB84协议。这采用单个光子的四个极化状态来编码随机键。SHOR,PRESKILL等人完成了严格的安全证明。[4]。第一个基于纠缠的利益是E91方案,Ekert于1991年提出[5]。一般而言,QKD供应托式的实现可以分为两类:制备量化QKD协议,例如BB84,其中一个方在光量子状态下将随机键赋予随机键,并发送到接收器的接收器,其中键被解码[6];以及基于纠缠的QKD协议,例如E91协议,其中Alice准备纠缠的状态并与BOB共享一个州的一方,并且测量结果生成随机键[6]。
BB84协议是由Charles H. Bennett和Gilles Brassard于1984年在印度的IEEE会议上提出的。该技术采用亚原子颗粒的量子特征来产生机密密钥。钥匙的位嵌入唯一光子的极化状态。bb84使用光子的四个极化状态,即水平(0°或H极化),垂直(90°或V极化),对角线(+45°)和抗二齿(-45°)。这种方法依赖于两个至关重要的量子力学原则,即不确定性原理和无键的定理,从而提高了其安全性和可靠性。这是因为在不检测光子状态的情况下无法访问以光子状态编码的信息,从而导致其破坏。同样,根据“无关定理”,不可能在不检测到的情况下创建相同的量子状态的相同副本,因此任何试图以未经授权的方式获取访问钥匙的窃听器(称为EVE)将被暴露。这是由于她不能
量子密钥分发 (QKD) 是一种利用量子态(例如单个或纠缠光子)的特性来分发用于加密和解密的安全密钥的方法。QKD 协议是一种算法,它允许双方生成并安全地共享一次性加密的安全密钥,因为它能够检测到窃听者的存在。在本报告中,我们探讨了几种 QKD 协议,包括 BB84 和 E91 协议,以及 QKD 的几种实验实施的结果。在 BB84 协议中,可以通过找到统计上显著数量的不正确量子比特来检测窃听者,这些不正确的量子比特在发送时以相同的基础进行测量,这意味着光子在接收之前是在错误的基础上测量的,或者光子是在错误的基础上测量然后重新发送的。在 E91 协议中,可以通过发现纠缠对中测量的光子未达到最大纠缠度来检测窃听者。然后,剩余的量子比特形成安全密钥。QKD 已在地面和卫星上进行了多次实验演示。
我们使用纠缠光子研究了量子键分布的安全性,重点是Bennett-Brassard 1984〜BB84的两光子变化!Bennett,Brasard和Mermin〜BBM92于1992年提出的协议!。我们提供了适用于现实来源的安全证明,以及可以放置在两个接收器实验室之外的不可信来源。证明仅限于单个窃听攻击,并假定检测设备是可信赖的。我们发现,BBM92协议的平均碰撞概率与带有理想单光子源的BB84协议的平均碰撞概率相同。这表明BBM92对光子分裂攻击没有类似物,并且可以在两个接收器之间放置源而不会改变碰撞概率的形式。然后,我们比较两种方案的通信速率是距离的函数,并表明在存在现实的实验性缺陷的情况下,BBM92具有更长的通信距离,最高170 km。最后,我们提出了一个基于纠缠交换的计划,该方案可能导致更长的距离通信。该方案中的限制因素是通道丢失,该渠道丢失在更长的距离时施加了非常缓慢的通信速率。
