摘要:多种睡眠呼吸障碍会引发反复的缺氧应激,从而可能导致认知障碍等神经系统疾病。然而,反复间歇性缺氧对血脑屏障 (BBB) 的影响尚不明确。本研究比较了两种间歇性缺氧诱导方法对 BBB 脑内皮的影响:一种是使用肼屈嗪,另一种是使用缺氧室。这些循环是在内皮细胞和星形胶质细胞共培养模型上进行的。在使用或不使用 HIF-1 抑制剂 YC-1 的情况下评估了 Na-Fl 通透性、紧密连接蛋白和 ABC 转运蛋白 (P-gp 和 MRP-1) 含量。我们的结果表明,肼屈嗪和间歇性物理缺氧逐渐改变 BBB 完整性,表现为 Na-Fl 通透性增加。这种改变伴随着紧密连接蛋白 ZO-1 和 claudin-5 浓度的降低。反过来,微血管内皮细胞上调 P-gp 和 MRP-1 的表达。在第三个周期的肼屈嗪治疗后也发现了这种改变。另一方面,第三次间歇性缺氧暴露显示 BBB 特征得以保留。此外,用 YC-1 抑制 HIF-1 α 可防止肼屈嗪治疗后出现 BBB 功能障碍。在物理间歇性缺氧的情况下,我们观察到不完全的逆转,这表明 BBB 功能障碍可能涉及其他生物学机制。总之,间歇性缺氧导致 BBB 模型发生改变,并在第三个周期后观察到适应性。
血脑屏障 (BBB) 是分子和药物的有效屏障。多细胞 3D 球体显示出可重现的 BBB 特征和功能。这里使用的球体由六种脑细胞类型组成:星形胶质细胞、周细胞、内皮细胞、小胶质细胞、少突胶质细胞和神经元。它们形成体外 BBB,调节化合物进入球体的运输。通过共聚焦激光扫描显微镜研究了荧光超小金纳米粒子(核心直径 2 纳米;流体动力学直径 3-4 纳米)在 BBB 中的渗透随时间的变化,以溶解的荧光染料 (FAM-炔烃) 作为对照。纳米粒子很容易进入球体内部,而溶解的染料本身无法穿透 BBB。我们提出了一个模型,该模型基于纳米粒子随时间打开 BBB,然后快速扩散到球体中心。当球体经历缺氧(0.1% O 2 ;24 小时)后,血脑屏障的通透性增强,允许更多的纳米颗粒和溶解的染料分子被吸收。结合我们之前观察到的这种纳米颗粒可以轻松进入细胞甚至细胞核,这些数据证明超小纳米颗粒可以穿过血脑屏障。
血脑屏障 (BBB) 是脑与外周循环之间的动态脑屏障。血脑屏障由脑毛细血管内皮细胞、周细胞和星形胶质细胞端足组成,可有效保护脑免受血液中有害毒素和病原体的侵害 (1,2)。血肿瘤屏障 (BTB) 是指位于脑微血管附近的改良血脑屏障,这种屏障是由于原发性脑肿瘤(包括神经母细胞瘤和其他内脏癌症,如肺癌、乳腺癌、黑色素瘤等)的存在导致神经血管单元发生变化而形成的 (3)。血脑屏障中 P-糖蛋白 (P-gp) 的表达可防止不必要的血液毒素和信号分子进入脑 (4-6)。这种复杂的结构不仅维护脑稳定性,而且还保护脑免受外界因素的影响。另一方面,当脑部出现病理改变时,药物可能难以穿透BBB和BTB屏障,使得药物治疗脑部疾病变得困难(7-9)。
与其他器官相比,脑组织与血液之间存在着活跃的血液和器官之间的分子交换,而脑组织与血液之间被血脑屏障隔开,血脑屏障由不同类型的细胞组成,这些细胞融合成一个极其紧密的屏障。血脑屏障的生理学特点是,只有非常小的亲脂性分子或脑上皮中具有自己专门的运输系统的分子才能克服它。这意味着,一方面,血脑屏障可以被视为一种进化奇迹,能够有效地保护大脑免受病原体和毒素的侵害,并创造一个高度专业化的环境。但另一方面,从药物治疗的角度来看,血脑屏障可以看作是一种负面的屏障,阻碍了对中枢神经系统 (CNS) 脑相关疾病的有效药物靶向。从药理学上打开血脑屏障以促进药物吸收既困难又危险,因为它总是伴随着有毒血浆蛋白进入的危险,从而导致神经治疗药物进入。有时,药物设计能够适应
微泡 (MB) 广泛用于超声 (US) 成像和药物输送。由于表面张力,MB 通常呈球形。当加热到玻璃化转变温度以上时,聚合物基 MB 可以机械拉伸以获得各向异性形状,从而赋予它们独特的超声介导血脑屏障 (BBB) 渗透特性。本文显示,非球形 MB 可以用 BBB 特异性靶向配体进行表面改性,从而促进与脑血管的结合和声波渗透。主动靶向的棒状 MB 是通过对球形聚(丁基氰基丙烯酸酯)MB 进行 1D 拉伸,然后用抗转铁蛋白受体 (TfR) 抗体对其外壳进行功能化而生成的。使用超声和光学成像证明,无论是在体外还是体内,非球形抗 TfR-MB 都能比球形抗 TfR-MB 更有效地与 BBB 内皮结合。与 BBB 靶向球形 MB 相比,与 BBB 相关的各向异性 MB 产生更强的空化信号,并显著增强 BBB 渗透和模型药物的输送。这些发现证明了抗体修饰的非球形 MB 具有向大脑靶向和触发药物输送的潜力。
放射治疗 (RT) 是治疗脑肿瘤的基石。除了细胞毒性之外,RT 还会破坏血脑屏障 (BBB),导致周围脑实质的通透性增加。尽管这种影响已被普遍承认,但不同放射方案如何影响以及在多大程度上影响 BBB 完整性仍不清楚。本系统综述和荟萃分析的目的是研究光子 RT 方案在临床和临床前研究中对 BBB 通透性(包括其可逆性)的影响。我们系统地回顾了 PubMed、Embase 和 Cochrane 搜索引擎中的相关临床和临床前文献。通过荟萃分析对总共 69 项纳入研究(20 项临床研究、49 项临床前研究)进行了定性和定量分析,并评估了不同疾病类型和 RT 方案中 RT 诱导的 BBB 通透性的关键决定因素。定性数据综合显示,35% 的纳入临床研究报告了 RT 后 BBB 中断,而 30% 的研究尚无定论。有趣的是,基于分次方案和累积剂量计算出不同生物有效剂量的研究之间没有观察到明显差异;然而,在治疗后的患者随访期间注意到 BBB 中断增加。临床前研究的定性分析显示,78% 的纳入研究存在 RT BBB 中断,这通过荟萃分析得到显著证实(p < 0.01)。值得注意的是,研究之间存在高偏倚风险、出版偏倚和高度异质性。这项系统评价和荟萃分析揭示了 RT 方案对 BBB 完整性的影响,并开启了将此因素整合到未来 RT 决策过程的讨论,以更好地研究其发生及其对伴随或辅助治疗的影响。
放射治疗 (RT) 是治疗脑肿瘤的基石。除了细胞毒性之外,RT 还会破坏血脑屏障 (BBB),导致周围脑实质的通透性增加。尽管这种影响已被普遍承认,但不同放射方案如何影响以及在多大程度上影响 BBB 完整性仍不清楚。本系统综述和荟萃分析的目的是研究光子 RT 方案在临床和临床前研究中对 BBB 通透性(包括其可逆性)的影响。我们系统地回顾了 PubMed、Embase 和 Cochrane 搜索引擎中的相关临床和临床前文献。通过荟萃分析对总共 69 项纳入研究(20 项临床研究、49 项临床前研究)进行了定性和定量分析,并评估了不同疾病类型和 RT 方案中 RT 诱导的 BBB 通透性的关键决定因素。定性数据综合显示,35% 的纳入临床研究报告了 RT 后 BBB 中断,而 30% 的研究尚无定论。有趣的是,基于分次方案和累积剂量计算出不同生物有效剂量的研究之间没有观察到明显差异;然而,在治疗后的患者随访期间注意到 BBB 中断增加。临床前研究的定性分析显示,78% 的纳入研究存在 RT BBB 中断,这通过荟萃分析得到显著证实(p < 0.01)。值得注意的是,研究之间存在高偏倚风险、出版偏倚和高度异质性。这项系统评价和荟萃分析揭示了 RT 方案对 BBB 完整性的影响,并开启了将此因素整合到未来 RT 决策过程的讨论,以更好地研究其发生及其对伴随或辅助治疗的影响。
血脑屏障 (BBB) 是脑与外周循环之间的动态脑屏障。血脑屏障由脑毛细血管内皮细胞、周细胞和星形胶质细胞端足组成,可有效保护脑免受血液中有害毒素和病原体的侵害 (1,2)。血肿瘤屏障 (BTB) 是指位于脑微血管附近的改良血脑屏障,这种屏障是由于原发性脑肿瘤(包括神经母细胞瘤和其他内脏癌症,如肺癌、乳腺癌、黑色素瘤等)的存在导致神经血管单元发生变化而形成的 (3)。血脑屏障中 P-糖蛋白 (P-gp) 的表达可防止不必要的血液毒素和信号分子进入脑 (4-6)。这种复杂的结构不仅维护脑稳定性,而且还保护脑免受外界因素的影响。另一方面,当脑部出现病理改变时,药物可能难以穿透BBB和BTB屏障,使得药物治疗脑部疾病变得困难(7-9)。
血脑屏障(BBB)是大脑和外围循环之间的动态脑屏障。包括脑毛细血管内皮细胞,周细胞和星形胶质细胞末端,BBB有效地屏蔽了大脑免受血液中有害毒素和病原体的影响(1,2)。血肿瘤屏障(BTB)是指位于脑微血管附近的一个修饰的BBB,该修饰是由于神经血管单元的变化而导致的,这是由于存在原发性脑肿瘤,包括神经母细胞瘤和其他内脏癌症,例如肺癌,乳腺癌,黑色素瘤等,例如(3)。P-糖蛋白(P-GP)在BBB中的表达可防止不必要的血液毒素和信号分子进入大脑(4-6)。这种错综复杂的结构不仅维护脑稳定性,而且还使大脑免受外部因素的影响。另一方面,当大脑中发生病理变化时,药物可能很难穿透BBB和BTB屏障,从而使药物挑战性脑部疾病治疗(7-9)。