摘要。我们开发了一种调整海冰流变性参数的新方法,该方法由两个组成部分组成:一种用于表征海冰变形模式的新指标和一种基于机器学习的方法(ML)基于调整流变学参数的方法。我们应用了新方法来调整脆弱的宾厄姆 - 麦克斯韦变流变性(BBM)参数,该参数已在下一代海冰模型(Nextsim)中实施并使用。作为参考数据集,我们使用了Radarsat地球物理处理系统(RGP)的海冰漂移和变形观测。度量标准表征了具有值载体的海冰变形场。它包括完善的描述器,例如变形的平均值和标准偏差,空间缩放分析的结构 - 功能以及线性运动学特征(LKFS)的密度和相交。我们将更多描述符添加到表征冰变形模式的度量标准中,包括图像各向异性和Haralick纹理特征。开发的度量可以从任何模型或卫星平台上涂抹冰变形。在参数调整方法中,我们首先运行具有扰动的流动性插曲的Nextsim成员的团队,然后使用相似的数据训练机器学习模型。我们将冰变形的描述作为ML模型和流变参数的输入作为目标。我们将经过训练的ML模型应用于从RGPS观测值计算的描述符。开发的基于ML的方法是通用的,可用于调整任何模型的参数。1 kPa),在参考量表上的内聚力(c ref≈1。00228)。我们使用数十个成员进行了实验,并找到了四个Sextsim BBM参数的光学值:缩放Pa-Rameter的抗压强度(P0≈5。2 mpa),内部摩擦和切线(µ≈0。7)和冰 - 大气阻力系数(ca≈0。与最佳的选言一起运行的次要运行,在视觉上产生海冰变形的地图 -
摘要:本文通过计算位置熵和动量熵,研究了分数阶薛定谔方程(分数阶导数(0 < n ≤ 2))中两个双曲单阱势的 Shannon 信息熵。我们发现,随着分数阶导数 n 的减小,波函数会向原点移动;在分数阶体系中,即当 n 值较小时,位置熵密度局域化程度越来越严重,而动量概率密度非局域化程度越来越高。然后,我们研究了 Beckner Bialynicki-Birula–Mycieslki(BBM)不等式,发现虽然该不等式随着双曲势 U 1 (或 U 2 )的深度 u 的增加而逐渐减小(或增大),但 Shannon 熵对于不同的深度 u 仍然满足该不等式。最后,我们还进行了 Fisher 熵的计算,发现 Fisher 熵随势阱深度 u 的增加而增大,分数阶导数n减小。
a =远程摘要警报面板bl =断路器锁(S)btm =电池温度监视器C =状态监控状态C c =干燥的表格C触点警报板D =滴水台上d =滴台(NEMA 2)i =干燥的表格C接触l =负载控制继电器=负载控制继电器(接触工厂接触工厂的负载控制申请)M =维持次数deasont waints waints warte deacters warters warter decters warter(3) seconds) P = Remote status panel (requires “C” option – status monitoring dry form C contacts alarm panel) S = Summary fault form C contacts SEA = Serial to ethernet adapter T = Ouput trip (supervised) alarm2 V = Time delay 15 minutes (15 minute retransfer time delay of normally off circuit after return of utility) Y = Battery strapping ZM# = Zone monitoring (quantity must be specified)
注意:这是一份补充文件。有关基本操作,请参阅 PS 系列操作说明 HXO-401-*。型号:BITZER / Buffalo Trident PS 系列蒸发器配备 CAREL EVD-ice BITZER / Buffalo Trident BBM/L 系列蒸发器配备 CAREL EVD-ice 目录 重要建议 2 1.简介 3 1.1.型号 3 1.2.功能和主要特性 4 1.3.配件 4 2.安装 5 2.1.尺寸 - mm (in) 5 2.2.蒸发器上的组装 5 2.3.应用图 6 2.4.接线说明 7 2.5.接线 7 3.用户界面 8 3.1.键盘 8 3.2.显示和可视化 8 3.3.编程模式 8 4.调试 9 4.1.调试程序 9 4.2.首次配置参数 10 5.功能 11 5.1.控制 11 5.2.服务参数 12 6.保护器 13 6.1.保护器 13 7.参数表 16 8.网络连接 17 8.1.网络地址 17 8.2.通过 PC 进行调试的网络连接 17 8.3.可视化参数管理器 17 8.4.恢复默认参数 18 8.5.通过直接复制进行设置 19
Ad Andorra Ae Arab Arimir Af Affanistan Ag Antigua和Barbuda AI Anguilla Al Albania Am Almenia Am An Netherlands Antelles Antilles ao Angola ao angola a a an a an a an a a a a a a ar a a rapentina a austria a a rapentina at ofer austria a austria a a a oferia a a a offeria G BULGARIA BH BHRAIN BARAIN BI BURUNDI BJ BENIN BM BMUDA BN BN BRUNEI DARUSSALAM BO BOLIVIA BR BR巴西BS BAHAMAS BAHAMAS BT BT BT BT BT BHUTAN BV ISLA BV ISLA BOTSLA BOTSWANA BW BOTSWANA BW BOTSWANA BX BENELUX BENELUX BENELUX BENELUX MARKS MARKS(BBM)Y比荷卢三国绘画与模型工作室 (BBDM) 由白俄罗斯 BZ 贝里斯 CA 加拿大 CD 刚果民主共和国 CF 中非共和国 CG 刚果 CH 瑞士 CI 科特迪瓦 CK 库克群岛 CL 智利 CM 喀麦隆 CN 中国 CO 哥伦比亚 CR 哥斯达黎加 CS 塞尔维亚和黑山 CU 古巴
摘要 植物原生质体是利用基因编辑对所需性状进行遗传操作的可靠实验系统。尽管如此,突变原生质体的选择和再生仍具有挑战性,而随后恢复成功编辑的植物是先进植物育种技术的一个重要瓶颈。为了缓解与原生质体转基因表达和原生质体再生相关的障碍,开发了一种新方法。结果表明,线性化 DNA 可以有效转染马铃薯原生质体,而来自各种植物的 UBIQUITIN10 启动子可以有效地指导转基因表达。此外,还对转染原生质体的卡那霉素抑制浓度进行了标准化,新霉素磷酸转移酶 2 ( NPT2 ) 基因可用作富集转染原生质体的有力选择标记。此外,BABYBOOM ( BBM ) 转录因子的瞬时表达促进了原生质体衍生愈伤组织的再生。总之,这些方法显著增加了对表现出高转基因表达的原生质体的筛选,从而显著提高了原生质体衍生愈伤组织中基因编辑事件的发生率,达到 95%。本研究开发的方法促进了四倍体马铃薯植物的基因编辑,并为多倍体生物中的复杂基因操作开辟了道路。
摘要:在本研究中,我们研究了双曲双阱势 (HDWP) 的分数阶薛定谔方程 (FSE) 中的位置和动量香农熵,分别表示为 S x 和 S p 。我们在分析中探索了用 k 表示的分数阶导数的各种值。我们的研究结果揭示了有关低位态的位置熵密度 ρ s ( x ) 和动量熵密度 ρ s ( p ) 的局部化特性的有趣行为。具体而言,随着分数阶导数 k 的减小,ρ s ( x ) 变得更加局部化,而 ρ s ( p ) 变得更加非局部化。此外,我们观察到随着导数 k 的减小,位置熵 S x 减小,而动量熵 S p 增加。特别地,这些熵的总和随着分数阶导数 k 的减小而持续增加。值得注意的是,尽管随着 HDWP 深度 u 的增加,位置 Shannon 熵 S x 增加,动量 Shannon 熵 S p 减少,但 Beckner–Bialynicki-Birula–Mycielski (BBM) 不等式关系仍然成立。此外,我们研究了 Fisher 熵及其对 HDWP 深度 u 和分数阶导数 k 的依赖关系。结果表明,Fisher 熵随着 HDWP 深度 u 的增加和分数阶导数 k 的减小而增加。
植物基因编辑可对植物进行有针对性的改造,在作物的基因功能分析和精准育种方面显示出巨大的潜力[1]。要生产基因编辑植物,需要将基因编辑试剂[2](例如 CRISPR/Cas9 成分)递送到植物细胞中。这涉及一个漫长、昂贵且劳动密集型的组织培养步骤,而且目前仅在有限数量的植物物种中可行,这成为植物基因编辑的主要瓶颈。在最近一期的《自然生物技术》上,由 Daniel F. Voytas 领导的明尼苏达大学研究小组描述了一种生产基因编辑植物的新方法,同时避免了组织培养的需要(图 1)[3]。该方法利用了分生组织的从头诱导。分化的植物细胞通常不能分裂或产生不同类型的细胞。然而,之前的研究表明,通过异位表达特定的发育调节因子,可以诱导已经分化的细胞形成分生组织。分生组织是包含未分化干细胞(分生细胞)的植物组织,这些干细胞能够进行细胞分裂,并能产生各种组织和器官。例如,在拟南芥中,WUSCHEL ( WUS ) 基因在胚胎发生中起着关键作用,过表达 WUS 可以促进营养生长向胚胎生长的转变 [ 4 ] 。SHOOT MERISTEMLESS ( STM ) 和 WUS 的联合异位表达可激活拟南芥中的一组分生组织功能,包括细胞分裂和器官发生 [ 5 ] 。 ipt 基因位于土壤细菌农杆菌的 Ti 质粒上,该基因编码异戊烯基转移酶,这种酶在植物中诱导细胞分裂素的生物合成,从而刺激器官发生[6]。在单子叶植物中,婴儿潮基因(Bbm)和 WUS 基因的过度表达可促进体细胞形成胚胎,从而提高转化效率[7]。Voytas 研究小组假设分生组织可以在发育调节因子的帮助下诱导。为了验证这一想法,使用多种启动子以不同的组合在本氏烟植物中表达了玉米 WUS2、拟南芥 STM、农杆菌 ipt 和其他发育调节因子。农杆菌用于传递转基因,并以荧光素酶作为报告基因。形成了分生组织状结构,这些结构长成具有荧光素酶表达的转基因植物,并且发现该特性是可遗传的。然后,使用相同的方法,将针对两个测试基因的单个向导 RNA (sgRNA) 与成功组合的发育调节剂一起引入组成性表达 Cas9 的转基因本氏烟叶中。在产生的芽中,可以验证目标基因的编辑,并且发现突变会传递给下一代。随后出现了一个问题,即在土壤中生长的植物上是否也能诱导分生组织。这种方法确实在许多双子叶植物中被证明是成功的,除了本氏烟草,在马铃薯和葡萄中也是如此。此外,还产生了基因编辑的本氏烟草植物,并且发现一些编辑过的植物不含有用于编辑的转基因。从头分生组织诱导方法被称为 Fast-TrACC(快速处理的农杆菌共培养),与传统的组织培养程序相比具有明显的优势(图 1)。首先,它大大缩短了生产基因编辑植物所需的时间,从几个月缩短到几周。其次,Fast-TrACC 不需要无菌条件,并且适用于在土壤中生长的植物。组织培养方法要求使用无菌工作台和无菌培养基,因此无组织培养方法需要的资源更少,并且适用于较小的群体。第三,当 Cas9 与 sgRNA 一起递送时,在某些情况下会产生基因编辑植物