我们使用纠缠光子研究了量子键分布的安全性,重点是Bennett-Brassard 1984〜BB84的两光子变化!Bennett,Brasard和Mermin〜BBM92于1992年提出的协议!。我们提供了适用于现实来源的安全证明,以及可以放置在两个接收器实验室之外的不可信来源。证明仅限于单个窃听攻击,并假定检测设备是可信赖的。我们发现,BBM92协议的平均碰撞概率与带有理想单光子源的BB84协议的平均碰撞概率相同。这表明BBM92对光子分裂攻击没有类似物,并且可以在两个接收器之间放置源而不会改变碰撞概率的形式。然后,我们比较两种方案的通信速率是距离的函数,并表明在存在现实的实验性缺陷的情况下,BBM92具有更长的通信距离,最高170 km。最后,我们提出了一个基于纠缠交换的计划,该方案可能导致更长的距离通信。该方案中的限制因素是通道丢失,该渠道丢失在更长的距离时施加了非常缓慢的通信速率。
半导体量子点即使在最大亮度下也能发射极化纠缠光子对,且多对发射概率极低。使用保真度高达 0.987(8) 的量子点源,我们在此实现量子密钥分发,在 13 小时的时间跨度内,平均量子比特错误率低至 1.9%。为了验证原理,在两栋由 350 米长的光纤连接的建筑物之间使用 BBM92 协议执行密钥生成,在 80 MHz 的泵送速率下,平均原始(安全)密钥速率为 135 比特/秒(86 比特/秒),无需借助时间或频率过滤技术。我们的工作证明了量子点作为基于纠缠的量子密钥分发和量子网络的光源的可行性。通过提高激发速率并将量子点嵌入最先进的光子结构中,原则上可以实现每秒千兆比特范围内的密钥生成速率。
