附加声明:已报告存在竞争利益。AKV、RQK、MHL、SW、NV、AB 没有竞争利益。DL、CAP、JMB、RJC 和 JW 是 Janssen(强生公司)的全职员工和/或强生公司的潜在股东。JG、CV 和 DAL 已被列为 JNJ-2901 专利申请的发明人。
目前,已有报道称阿托伐醌和 ELQs 通过破坏细胞色素 bc1 复合物来改变药物靶点,用于治疗人类巴贝斯虫病和疟疾 [19, 21, 22, 41, 43]。2019 年,韩国在人类血液中检测到一种类似 B. motasi 的寄生虫 [47],这表明 B. motasi 可能具有潜在的人畜共患性。因此,我们应该调查中国人类感染 B. motasi 的情况,并评估 B. motasi 的人畜共患潜力以及与细胞色素 bc1 复合物结合的抑制剂的影响。我们的数据显示,阿托伐醌、斯格马特林、粘噻唑、内毒素样喹诺酮 (ELQ)、抗霉素 A 和 NQNO 药物未来可用于治疗巴贝斯虫病。这些药物耐药的分子机制是细胞色素 b 的突变,这表明
用于使用氧化还原中心的反硝化酶,我们正在利用高级同步器和基于X射线激光的晶体学方法(在英国钻石,英国和日本萨克拉)以及高分辨率的冷冻方法来定义这些持续生命的酶的酶机制。冷冻革命使我们能够将其与细胞色素BC1的晶体学研究,电子传输链的复合物和经过验证的抗性靶标相结合。在利兹和钻石上使用冷冻设施,可以在高分辨率的BC1溶液中可视化候选者。X- Ray和冷冻方法还用于研究MAT酶和复合物,这是一种与肝病相关的关键酶。
China & Eurasian version: 2G: B2/B3/B5/B8 3G: WCDMA: B1/B5/B8, CDMA&EVDO: BC0, TD-SCDMA: B34/B39 4G: FDD-LTE: B1/B3/B5/B7/B8/B20,TDD-LTE: B34/B38/B39/B40/B41美国版:2G:B2/B3/B5 3G:B1/B2/B4/B5,CDMA和EVDO:BC0/BC1(美国)4G:B1/B2/B2/B3/B3/B4/B5/B5/B7/B12/B12/B17/B17/B28A/B28A/B28B/B41
中国和欧亚人版本:2G:900/1800 3G:WCDMA:B1/B8 4G:FDD-LTE:B1/B3/B3/B7/B8/B8/B20,TDD-LTE,TDD-LTE:B34/B38/B38/B40美国版:2G:2G:B2/B3/B3/B5 3G: B1/B2/B4/B5,CDMA和EVDO:BC0/BC1(美国)4G:B1/B2/B3/B4/B4/B5/B7/B7/B17/B17/B17/B28A/B28A/B28B/B41
图 5. (a) “全局-局部”建模方法,从粘合机身筒模型的全局模型中提取位移场,并为局部模型(W =500 毫米)插入边界条件;(b) 压力差为 ∆P =0.06 MPa(代表客机机身)时,具有三种不同边界条件(BC1、BC2 和 BC3)的全局 FE 模型,颜色轮廓表示在应用边界条件下的位移大小(蓝色表示零位移,红色表示最大位移)
正向育种是指在适当的环境中选择具有改良性能的重组体,它一直是作物产量随时间推移不断提高的驱动力。杂种优势的发现(杂种优势是指杂交品种相对于其自交系亲本而言具有改良性能)大大提高了杂交育种早期阶段的产量提高率(Sivasankar 等人,2012 年)。生物和非生物胁迫会降低产量,并造成潜在产量与实际产量之间的差距(Duvick,2005 年)。正向育种对于作物改良必不可少,尤其是对于复杂性状和胁迫环境而言,这是一个资源密集且耗时的过程。即使是由单个基因遗传的简单性状,也需要多次回交 (BC) 才能重建受体亲本的基因组。通过传统方法引入性状的另一个缺点是产量拖累,这个术语用来指供体亲本中不需要的基因导致的粮食产量降低,即使经过多次回交,这些基因仍然存在。由于这些基因之前未经过农艺性能选择,它们往往会降低转化品种的可收获产量。假设不进行选择且不抑制重组,则在 m 次回交后仍会保留下来的供体亲本基因数为 n ∗ d ∗ (1/2) m,其中 d 是供体与优良品系之间差异基因座的比例,n 是作物物种中的基因总数。例如,面包小麦有 ∼ 110 K 基因( Consortium et al., 2018 )。如果野生供体种质与轮回亲本在 30% 的基因座上存在差异,则经过四次回交后,转化品种中将继续存在一千多个来自供体亲本的基因。在差异很大的品系之间的杂交中,有限的重组可能会限制供体亲本的基因组片段被引入轮回亲本基因组的比例,但也可能对减少渗入的供体片段的大小构成挑战,从而增加连锁累赘的可能性(Hao et al., 2020)。标记可以帮助减少(但不能消除)BC1 阶段的供体亲本基因组片段。在资源有限的情况下开展的育种计划将
