摘要。目标。本研究对开放脑电图数据集进行了广泛的大脑计算机界面(BCI)可重复性分析,旨在评估现有的解决方案并建立开放且可重复的基准测试,以有效比较该领域。对这种基准的需求在于产生未公开的专有解决方案的快速工业进步。此外,科学文献是密集的,通常具有具有挑战性的评估,从而使现有方法之间的比较艰巨。方法。在一个开放式框架中,在36个公开可用的数据集中对30个机器学习管道(分为原始信号:11,Riemannian:13,深度学习:6)进行了精心重新实现和评估,包括汽车图像(14),p300(15)(15)和SSVEP(7)。该分析结合了统计荟萃分析技术,以进行结果评估,包括执行时间和环境影响注意事项。主要结果。该研究产生了适用于各种BCI范式的原则和鲁棒结果,强调运动图像,P300和SSVEP。值得注意的是,利用空间协方差矩阵的Riemannian方法表现出卓越的性能,强调了大量数据量的必要性,以通过深度学习技术实现竞争成果。全面的结果是公开访问的,为将来的研究铺平了道路,以进一步提高BCI领域的可重复性。意义。这项研究的重要性在于它在建立严格和透明的基准的BCI研究中做出的贡献,为最佳方法论提供了见解,并强调了可重复性在推动该领域进步方面的重要性。
摘要 — 中风是导致成人复杂残疾的主要原因。中风后运动障碍和认知障碍的患病率很高且持续存在。最常见的后果是对侧上肢偏瘫,超过 80% 的中风患者急性发作,超过 40% 的中风患者慢性发作。基于运动意象的脑机接口 (BCI) 在中风后运动恢复方面表现出良好的效果。然而,这种方法并不适用于所有患者,即使有效,在不同患者之间的效果也大不相同。因此需要改进。这可以通过为每位患者个性化基于 BCI 的运动康复 (MR) 计划来实现,特别是通过个性化所使用的人工智能 (AI) 模型。为此,首先必须确定成功的基于 BCI 的运动康复的预测因素。事实上,很少有研究解决影响中风后基于 BCI 的 MR 的因素的问题。因此,在本文中,我们调查了与成功使用 BCI 相关的因素以及与中风后运动康复相关的因素,以确定可能影响基于 BCI 的中风后 MR 的各种因素。然后,我们讨论如何考虑这些因素,以便开发新的 AI 算法,用于个性化的中风后基于 BCI 的 MR。索引术语 —BCI、中风运动康复、性能预测器、训练个性化、人工智能
脑机接口 (BCI) 的研究已有 30 年左右的历史。然而,即便如此,在实验室环境中完成的大部分工作也很少应用于目标终端用户,例如患有严重运动障碍的人。研究界的主要目标应该是最终将 BCI 带入终端用户可以获利并获得独立和生活质量的状态。将该领域推向实际应用的一种可能性是由 CYBATHLON [由苏黎世联邦理工学院(Riener,2016)发起] 和其他竞赛推动的。这样的竞赛挑战研究机构和行业在现实世界中展示他们的发展并突破研究的界限。在 CYBATHLON(Novak 等,2017)的 BCI 竞赛中,终端用户是飞行员,他们通过使用多类 BCI 控制化身与其他飞行员竞赛。此类竞赛以及其他竞赛对开发人员的要求极高,因为 BCI 系统必须在竞赛时正常工作,在实验室之外的陌生环境中,周围有观众、有噪音,并且没有第二次机会。在中国,BCI 竞赛于 2010 年首次由清华大学组织。自 2017 年起,BCI 竞赛由中国电子学会作为世界机器人大会的一部分组织。每年都有数千名用户参加。BCI 竞赛包含两部分:用户竞赛和算法竞赛。用户竞赛的获胜者随后参加算法竞赛,以测试 BCI 研究团队上传的算法的性能。通过这些 BCI 竞赛,获得了大量用于进一步研究的 BCI 数据,这些数据已用于推动 BCI 算法的进步。在不久的将来,这些数据将在线发布,供世界各地的 BCI 研究人员使用。当然,另一个极其重要的因素是团队为竞赛所做的准备。具体来说,应该训练最终用户飞行员产生稳定和准确的心理状态,产生一致的大脑振荡来控制 BCI,即使在诸如 CYBATHLON 竞技场等潜在的压力环境中也是如此。
脑机接口 (BCI) 是一种不依赖于大脑周围神经和肌肉正常输出通路的通信系统。无线脑机接口 (WBCI) 系统是 BCI 系统的一个分支,它采用一种独特的方法来获取大脑的电活动,即脑电图 (EEG),使用有效的非侵入式植入电极方案,并采用无线通信方案传输获取的 EEG 进行进一步处理。五个最重要的安全和隐私问题是身份验证、访问控制、恶意行为、加密和通信。通过在 6G 技术背景下适当实施无线 BCI,本章全面概述了 WBCI 和 6G 技术,并概述了基于人工智能的方案在解决因 6G 网络部署到围绕 WBCI 的环境中而产生的安全和隐私问题方面的效用。
脑电图(EEG)和功能磁共振成像(fMRI)是两种常用的非侵入性技术,用于测量神经科学和脑部计算机接口(BCI)中的大脑活动。虽然脑电图具有较高的时间分辨率和低空间分辨率,但fMRI具有高空间分辨率和低时间分辨率。在这篇综述中,我们专注于在神经反馈(NF)中使用脑电图和fMRI,并讨论结合两种方式的挑战,以提高人们对大脑活动的了解并实现更有效的临床结果。已经开发出高级技术来同时记录脑电图和fMRI信号,以便更好地了解两种方式之间的关系。然而,脑过程的复杂性和脑电图和fMRI的异质性质在从组合数据中提取有用的信息时面临着挑战。我们将调查现有的EEG-FMRI组合和最近利用NF EEG-FMRI的研究,从而强调了实验和技术挑战。我们还将确定该领域的剩余挑战。
摘要 - 近年来,使用运动图像的大脑计算机界面(BCI)显示出一些局限性在控制质量方面。为了改善这项有前途的技术,一些研究旨在与其他技术(例如眼睛跟踪)开发混合BCI,这些技术显示出更可靠的可靠性。但是,在机器人控制中使用眼动仪可能会自身影响机构感(SOA)(SOA)和用于运动图像(MI)区域的大脑活动。在这里,我们探讨了代理意识与运动皮层活动之间的联系。为此,我们使用了投影在表面上的虚拟臂,该虚拟手臂由运动捕获控制或使用眼迹器凝视控制。我们发现,在凝视控制任务期间,电动机皮层有一项活动,并且对预计的机器人臂的控制会带来显着差异,这与观察机器人移动的情况有很大的差异。
摘要 — 自动检测和去除脑电图 (EEG) 异常值对于设计强大的脑机接口 (BCI) 至关重要。在本文中,我们提出了一种新的异常值检测方法,该方法适用于样本协方差矩阵 (SCM) 的黎曼流形。现有的异常值检测方法存在错误地将某些样本拒绝为异常值的风险,即使没有异常值,因为检测基于参考矩阵和阈值。为了解决这一限制,我们的方法黎曼谱聚类 (RiSC) 基于提出的相似性度量将 SCM 聚类为非异常值和异常值,从而检测异常值。这考虑了空间的黎曼几何,并放大了非异常值簇内的相似性并削弱了非异常值和异常值簇之间的相似性,而不是设置阈值。为了评估 RiSC 的性能,我们生成了受不同强度和数量的异常值污染的人工 EEG 数据集。比较 RiSC 与现有异常值检测方法之间的 Hit-False (HF) 差异,证实 RiSC 可以显著更好地检测异常值 (p < 0.001)。特别是,对于异常值污染最严重的数据集,RiSC 对 HF 差异的改善最大。
基于运动想象的脑机接口 (MI-BCI) 依赖于人与机器之间的交互。因此,两个组件的(学习)特性对于理解和提高性能至关重要。数据驱动方法通常用于选择/提取几乎没有神经生理先验的特征。这种方法是否应该包括先验知识,如果是,那么包括哪些?本文研究了 BCI 性能与由流行的启发式算法选择的特定于受试者的最具判别力的频带 (MDFB) 的特征之间的关系。首先,我们的结果显示所选的 MDFB 特性(平均值和宽度)与性能之间存在相关性。然后,为了调查可能的因果关系,我们在线比较了使用受限(强制与高性能相关的特性)和不受约束的算法获得的性能。虽然我们无法得出因果关系的结论,但使用受限算法的平均性能最高。最后,为了更好地了解 MDFB 特性与性能之间的关系,我们使用机器学习来 1) 使用 MDFB 特性预测 MI-BCI 性能和 2) 为每个受试者自动选择最佳算法(受约束或不受约束)。我们的结果表明,对于具有明显不同或没有明显 EEG 模式的受试者,受约束算法可以提高其性能。
基于脑电图 (EEG) 的脑机接口 (BCI) 通常被认为是针对运动障碍用户的有前途的辅助技术,但由于在现实生活中的可靠性低,在实验室外仍很少使用。因此,需要设计可供最终用户(例如严重运动障碍者)在实验室外使用的长期可靠的 BCI。因此,我们提出并评估了一种基于多类心理任务 (MT) 的 BCI 设计,用于为 CYBATHLON BCI 系列 2019 的四肢瘫痪用户进行纵向训练(3 个月内 20 次训练)。在本次 BCI 锦标赛中,四肢瘫痪的飞行员在赛车游戏中用精神驾驶虚拟汽车。我们旨在将渐进式用户 MT-BCI 训练与基于自适应黎曼分类器的新设计的机器学习流程相结合,该分类器已被证明有望在现实生活中应用。我们遵循两步训练过程:前 11 个课程用于训练用户通过执行两个认知任务(休息和心理减法)或两个运动想象任务(左手和右手)来控制 2 类 MT-BCI。第二个训练步骤(剩余 9 个课程)应用了自适应、独立于会话的黎曼分类器,该分类器结合了之前使用的所有 4 个 MT 类别。此外,由于我们的黎曼分类器以无监督的方式逐步更新,因此它将捕获会话内和会话之间的非平稳性。实验证据证实了这种方法的有效性。也就是说,与初始课程相比,训练结束时的分类准确率提高了约 30%。我们还研究了这种性能改进的神经相关性。使用新提出的 BCI 用户学习指标,我们可以显示我们的用户学会了通过产生越来越匹配 BCI 分类器训练数据分布的 EEG 信号来改善他的 BCI 控制,而不是通过改善他的 EEG 类别辨别。然而,由此产生的改进只对同步(基于提示)BCI 有效,并没有转化为 CYBATHLON BCI 游戏性能的提高。为了克服这个问题
“版权法中一些最具开创性的发展是由技术变革推动的……有必要将技术与前电子时代的法律原则相协调。”1 Sweet 法官的主张——国会和司法机构必须努力将新技术与根深蒂固的法律原则相协调——是不言而喻的。事实上,在 Sweet 法官就 Matthew Bender & Co. v. West Publishing Co. 一案发表异议书的一个多世纪前,最高法院在 Burrow-Giles Lithographic Co. v. Sarony 一案中就考虑了国会是否有宪法权利授予照片版权保护。3 米勒大法官代表全票通过了判决,他指出这个问题“并非没有困难”。4 Burrow-Giles 一案的上诉人辩称,与美国宪法第一条第 8 款相反,