从时间0到曲线下的AUC 0-INF区域从曲线到无穷大的AUC AUC 0持续区域从时间0到最后一个测得的浓度AUC 0-TAU面积在曲线下到剂量周期的结束,并在给药期结束时BCRP乳腺癌抗癌蛋白BMI BMI BMI体重指数C 24小时C 24小时C 24小时C 24小时在48HR浓度下50次浓度,在48hr CFR联邦法规守则CI置信区间CLIA临床实验室改进修正案C最大浓度COVID-19 CORONAVIRUS病2019; caused by SARS-CoV-2 CoVs coronaviruses CPE cytopathic effect CrCl creatinine clearance CRF case report form CRO contract research organization CRP C-reactive protein C trough minimum concentration CV% coefficient of variation CYP cytochrome P450 DAIDS Division of AIDS DDI drug-drug interaction DSMB data safety monitoring board eCRF electronic case report form EC 50 half maximal (50%)有效浓度EC 90 90%最大有效浓度E/CIA酶或从时间0到曲线下的AUC 0-INF区域从曲线到无穷大的AUC AUC 0持续区域从时间0到最后一个测得的浓度AUC 0-TAU面积在曲线下到剂量周期的结束,并在给药期结束时BCRP乳腺癌抗癌蛋白BMI BMI BMI体重指数C 24小时C 24小时C 24小时C 24小时在48HR浓度下50次浓度,在48hr CFR联邦法规守则CI置信区间CLIA临床实验室改进修正案C最大浓度COVID-19 CORONAVIRUS病2019; caused by SARS-CoV-2 CoVs coronaviruses CPE cytopathic effect CrCl creatinine clearance CRF case report form CRO contract research organization CRP C-reactive protein C trough minimum concentration CV% coefficient of variation CYP cytochrome P450 DAIDS Division of AIDS DDI drug-drug interaction DSMB data safety monitoring board eCRF electronic case report form EC 50 half maximal (50%)有效浓度EC 90 90%最大有效浓度E/CIA酶或从时间0到曲线下的AUC 0-INF区域从曲线到无穷大的AUC AUC 0持续区域从时间0到最后一个测得的浓度AUC 0-TAU面积在曲线下到剂量周期的结束,并在给药期结束时BCRP乳腺癌抗癌蛋白BMI BMI BMI体重指数C 24小时C 24小时C 24小时C 24小时在48HR浓度下50次浓度,在48hr CFR联邦法规守则CI置信区间CLIA临床实验室改进修正案C最大浓度COVID-19 CORONAVIRUS病2019; caused by SARS-CoV-2 CoVs coronaviruses CPE cytopathic effect CrCl creatinine clearance CRF case report form CRO contract research organization CRP C-reactive protein C trough minimum concentration CV% coefficient of variation CYP cytochrome P450 DAIDS Division of AIDS DDI drug-drug interaction DSMB data safety monitoring board eCRF electronic case report form EC 50 half maximal (50%)有效浓度EC 90 90%最大有效浓度E/CIA酶或
•强的CYP3A抑制剂:避免使用。增加了Sparsentan的暴露量(2.6,7.2,12.3)。•中度CYP3A抑制剂:监测不良反应。增加了Sparsentan的暴露(7.2,12.3)。•强大的CYP3A诱导剂:避免使用。减少了Sparsentan的暴露(7.3,12.3)。•抗酸剂:避免在使用Sparsentan前2小时内使用。可能会减少对Sparsentan的接触(7.4,11)。•酸还原剂:避免伴随使用。可能会减少对Sparsentan的接触(7.4)。•非甾体类抗炎药(NSAID),包括选择性环氧合酶(COX-2)抑制剂:监测肾功能恶化的迹象。增加肾脏损伤的风险(7.5)。•CYP2B6、2C9和2C19底物:底物功效的监测。减少了这些底物的暴露(7.6,12.3)。•敏感的P-GP和BCRP底物:避免使用。增加对基材的接触(7.7,12.3)。•增加血清钾的药物:高钾血症的风险增加,经常监测血清钾(5.6,7.8)。
摘要:2020年,乳腺癌成为最常见的癌症类型,新增确诊病例近230万。然而,如果及早诊断并得到适当的治疗,乳腺癌的预后良好。在这里,我们研究了硫脲衍生物对两种不同类型的乳腺癌细胞(MCF-7和MDA-MB-231)的影响,硫脲衍生物之前被确定为针对拓扑异构酶II α和吲哚胺-2,3-双加氧酶1(IDO 1)的双重抑制剂。所研究的化合物(1 – 3)选择性地抑制乳腺癌细胞的生长并通过caspase-8和caspase-9相关途径促进细胞凋亡。此外,这些化合物导致S期细胞周期停滞,并以剂量依赖性方式抑制MCF-7和MDA-MB-231细胞中ATP结合盒转运蛋白(MDR1、MRP1/2和BCRP)的活性。此外,在与化合物 1 孵育后,观察到两种类型的乳腺癌细胞中自噬细胞数量增加。在 ADME-Tox 特性的初步测试中,评估了化合物 1 – 3 的可能溶血活性及其对特定细胞色素 P450 酶的影响。
摘要:在2020年,乳腺癌成为最常见的癌症类型,被诊断出近230万例新病例。但是,通过早期诊断和适当的治疗,乳腺癌的预后良好。在这里,我们研究了硫代氨基氮衍生物的作用,该硫代衍生物的作用先前鉴定为靶向拓扑异构酶IIα和吲哚美林-2,3-二氧酶1(IDO 1)的双重抑制剂(MCF-7和MDA-MDA-MB-231)。研究的化合物(1-3)选择性地抑制了乳腺癌细胞的生长,并通过caspase-8-和caspase-9相关途径促进了凋亡。此外,这些化合物在MCF-7和MDA-MB-231细胞中引起S期细胞周期停滞,并依赖于剂量抑制ATP结合盒转运蛋白(MDR1,MRP1/2和BCRP)的活性。此外,在与化合物1孵育后,观察到两种类型的乳腺癌细胞中的自噬细胞数量增加。在对ADME-TOX特性进行初步测试期间,评估了化合物1-3的可能的溶血活性及其对特定细胞色素P450酶的影响。
摘要:在抗癌治疗中使用多西他赛 (DTX) 等化疗药物通常与副作用和耐药性的发生有关,这会大大削弱药物的疗效。在这里,我们证明了用依诺肝素 (Enox) 包覆的自乳化药物输送系统 (SEDDS) 是一种在耐药肿瘤中输送 DTX 的有前途的策略。SEDDS 预浓缩物和释放介质 (水) 之间的 DTX 分配研究表明,在释放介质中稀释后,药物可以很好地保留在 SEDDS 中。所有 SEDDS 制剂在盐水中稀释后都显示出平均直径在 110 到 145 nm 之间的液滴,并且溶血活性可以忽略不计;灭菌后液滴大小保持不变。与对照组相比,含有 DTX 的 Enox 涂层 SEDDS 对不同实体肿瘤细胞(特征为高水平 FGFR)表现出更强的细胞生长抑制作用,这是由于 Enox 介导的 DTX 内化作用增加所致。此外,只有 Enox 涂层 SEDDS 能够通过抑制这两种主要 DTX 外排转运蛋白的活性,恢复表达 MRP1 和 BCRP 的耐药细胞对 DTX 的敏感性。这些制剂的有效性和安全性也在耐药非小细胞肺癌异种移植中得到体内证实。
ARAF,丝氨酸/苏氨酸蛋白激酶 A–快速加速纤维肉瘤;ATP,三磷酸腺苷;AUC,浓度时间曲线下面积;AUC 0–last,从时间 0 到最后测量浓度的 AUC;BCRP,乳腺癌耐药蛋白转运蛋白;BID,每日两次;BRAF,v-Raf 鼠肉瘤病毒致癌基因同源物 B1;CNS,中枢神经系统;CRAF,丝氨酸/苏氨酸蛋白激酶 C-Raf;CSF,脑脊液;DFG,天冬氨酸-苯丙氨酸-甘氨酸;DMSO,二甲基亚砜;ELISA,酶联免疫吸附试验;ERK,细胞外信号调节激酶;GTP,三磷酸鸟苷;hrs,小时;IC 50,半数最大抑制浓度; Kp uu,非结合分配系数(游离脑浓度/游离血浆浓度);KRAS,Kirsten RAS;M,摩尔;MDR1,多药耐药突变转运体;MEK,丝裂原活化蛋白激酶激酶;NRAS,神经母细胞瘤 RAS;PERK,蛋白激酶 R 样内质网激酶;PK,药代动力学;po,口服;pRSK,磷酸化 RSK;QD,每日一次;RAF,快速加速性纤维肉瘤;RAS,大鼠肉瘤小 GTPase 蛋白;RSK,核糖体 s6 激酶;SEM,均值标准误差;t 1/2,半衰期;TGI,肿瘤生长抑制;T. sol,热力学溶解度;WT,野生型。
缩写:AAE,每1000例预期的绝对效果; ACT,主动对照试验; AE,不利事件; ACVR1,激活素A型I型; ALK2,激活素受体样激酶2;同种异体造血干细胞移植;蝙蝠,最好的疗法; BCRP,乳腺癌抗性蛋白; DB,双盲; DD,双假人;差异,差异; ECOG,东部合作肿瘤学小组; EPO,红细胞生成素;人力资源,危险比; int,中级; IPS,国际预后评分系统; Jaki,Janus激酶抑制剂; MF,骨髓纤维化; MFSAF TSS-50在骨髓纤维化症状评估表中的基线降低50%; MMB,Momelotinib; MN,跨国公司; MOA,作用机理; NE,不可估计; ni,非劣势; OATP,有机阴离子运输多肽; OL,开放标签; OS,整体生存; PLT,血小板或血小板计数; PMF,原发性骨髓纤维化; PMN,多形核白细胞; PN,周围神经病; PS,性能状态;问,建议的评分,评估,开发和评估(等级)质量评级; RBC,红细胞; RCT,随机临床试验; rux,ruxolitinib; SMF,继发性骨髓纤维化; SUP,优越性; SVR,脾脏响应; SVR-35,SVR中的基线降低35%; Ti,输血独立性; TSS,总症状评分; ULN,正常
缩写:AD,阿尔茨海默氏病; ALS,肌萎缩性侧索硬化症;应用,淀粉样前体蛋白; β,淀粉样β; BACE1,β位点淀粉样蛋白前体蛋白裂解酶1; BBB,血脑屏障; BCRP,乳腺癌抗性蛋白; BPS,双酚; BPA,双酚A; BPAF,双酚AF; BPB,Bisphenol B; BPF,双酚F; BPS,双足醇S; Ca 2 +,钙;猫,过氧化氢酶;中枢神经系统,中枢神经系统;中枢神经系统,皮质神经元; DA,多巴胺; DAT,多巴胺转运蛋白; PYSL2,二氢吡啶酶相关蛋白2; ECHA,欧洲化学局; EDC,内分泌破坏化学物质; ER,雌激素受体; GSK3β,糖原合酶激酶3β; HT-22,海马细胞系; IR,胰岛素受体; IRS,胰岛素受体底物; MAP2,微管相关蛋白2; MDA,疟原虫dehyde; MS,多发性硬化症; NFT,神经纤维纠缠; NOS,一氧化氮合酶; PD,帕金森氏病; PDI,蛋白二硫异构酶; RNase,还原核糖核酸酶; ROS,活性氧; SN,黑底尼格拉; SNC,黑质Nigra pars commacta;草皮,超氧化物歧化酶; SPS,老年斑块; SVHC,非常关注的实质; Th,酪氨酸羟化酶; TK,酪氨酸激酶; α -syn,α-苏核蛋白。*通讯作者。电子邮件地址:lipinglu@hznu.edu.cn(L. lu)。电子邮件地址:lipinglu@hznu.edu.cn(L. lu)。
乳腺癌是一种高度复杂,多样的疾病,根据雌激素受体(ER),孕酮受体(PR)和人表皮生长因子受体2(HER2)的表达,被分类为几种亚型。这种分类至关重要,因为它决定了该疾病的最佳治疗策略。缺乏三个受体表达的乳腺癌的一种亚型称为三阴性乳腺癌(TNBC)。因此,TNBC患者不会受益于针对ER或HER2的疗法,并且通常需要全身治疗。TNBC约占所有已诊断出的乳腺癌的15-20%,每年约有5%的癌症死亡。TNBC的亚组表达雄激素受体(AR),这被认为是潜在的治疗靶标。已发表的报告表明,AR信号通路有助于该乳腺癌亚型的生长和发展。此外,据报道,AR阳性TNBC对新辅助化学疗法的病理完全反应率明显降低,并且更具有化学疗法。AR的靶标包括多药耐药性转运蛋白,例如抗乳腺癌蛋白(BCRP/ABCG2),这是抗化疗的主要原因。有趣的是,ABCG2基因也已被证明是由特定的microRNA分子(miRNA)靶向的,这些分子也受到AR的转录调节。在此,提出了AR,ABCG2和miRNA在调节乳腺癌化学回应性中的作用,并提出了一种提议,以利用这些知识来设计一种新型的TNBC治疗策略。
复杂的酶相互作用在癌症扩散过程中起着重要作用,而癌症扩散是由不受控制的细胞增殖所推动的。DNA 拓扑异构酶对于修复 DNA 拓扑问题非常重要,作为抗癌药物的潜在靶点,它引起了人们的极大兴趣。癌症治疗包括放疗、手术和化疗,旨在控制细胞的存活、死亡和移动性,而这些是通过离子通过通道和载体跨细胞膜运输介导的。恶性转化的特征是通道和载体的改变。化疗耐药性通常在化疗后出现,表示对癌症进展的治疗效果下降。化学增敏剂与抗癌药物联合使用,以克服这种耐药性,特别是针对三磷酸腺苷 (ATP) 结合盒 (ABC) 转运蛋白,包括 P-糖蛋白、多药耐药相关蛋白 1 (MRP1)、乳腺癌耐药蛋白 (BCRP)。治疗的有效靶点是转录因子,它们在癌症发展中起着关键作用。通过与受体、酶、离子通道、转运蛋白和 TF 相互作用,纳米技术提高了肿瘤定位、治疗和诊断的安全性。由于突变或信号传导改变,大鼠肉瘤 (RAS) 蛋白调节信号传导,这对于健康生长和癌症发展都至关重要。针对 RAS 通路的合理治疗有可能抑制肿瘤的生长和扩散。新