退役福利发放 (BDD) 办公室协助 ETS 和退休军人办理退役前 VA 残疾索赔手续。如果您有兴趣提交退役前 VA 索赔,请参加我们每周三 09:00 在过渡援助计划设施礼堂(9230 号楼)举行的简报会。简报会大约持续 2 个半小时。无需注册即可参加简报会,但出席人数以先到先得为准。军人无需有医疗记录即可参加此简报会。但应尽早申请医疗记录,以确保在 180-90 天的 BDD 窗口内收到。简报会将包括问答部分。MSC 将解决当时简报会中未涉及的所有问题/疑虑或特殊情况。
参考文献[1] Tsimikas S和Marcovina S,Ancestry,脂蛋白(A)和心血管风险阈值:JAM Coll Cardiol。2022 Aug,80(9)934–946 [2] Beaglehole,R.,Reddy,S.,Leeder,S.R。(2007)。贫困与人类发展:心血管疾病的全球影响。循环116,1871–1873。[3] Zheng W,Chilazi M,Park J等。评估估计脂蛋白(A)胆固醇和脂蛋白(A) - 游离低密度脂蛋白胆固醇的准确性。美国心脏协会期刊。2022; 11(2)。d oi: 10.1161/jaha.121.023136 [4] Kronenberg F. et al, Lipoprotein(a) in atherosclerotic cardiovascular disease and aortic stenosis: a European Atherosclerosis Society consensus statement , European Heart Journal, Volume 43, Issue 39, 14 October 2022, Pages 3925–3946 [5] Simony SB, Mortensen MB,Langsted A,Afzal S,Kamstrup PR,Nordestgaard BG。脂蛋白(a)水平的性别差异以及年龄划分的发病率和死亡率的相关风险:哥本哈根一般人口研究。动脉粥样硬化。2022 Aug; 355:76-82。 doi:10.1016/j.athersclerosis.2022.06.1023。EPUB 2022 JUN 27。PMID:35803767。[6] Mehta A,Jain V,Saeed A,Saseen JJ,Gulati M,Ballantyne CM,Virani SS。脂蛋白(A)和种族。动脉粥样硬化。2022年5月; 349:42-52。 doi:10.1016/j.athersclorisosis.2022.04.005。PMID:35606075。
• 如果您距离 BDD 办公室不远,您可以通过 VERA - 德国 BDD 或 VERA - 韩国 BDD 的访客参与报告应用程序 (VERA) 安排电话预约。请在特殊要求部分添加注释,注明您的电话号码(包括国家代码)。
摘要 :脑内神经递质多巴胺 (DA) 的含量异常与帕金森病、阿尔兹海 默症等神经系统类疾病的发生发展密切相关,精准、实时监测其脑 内含量可作为临床诊疗的重要参考。电化学分析法具备成本低、响 应快、可实现体内实时监测等优势。然而,脑内复杂环境中蛋白吸 附、多物质共存等因素会极大干扰多巴胺的定量分析,这对电极的 灵敏度、选择性和稳定性提出了极高的要求。因此,研发出满足要 求的电极材料是实现多巴胺电化学检测临床应用的关键。掺硼金刚 石 (BDD) 电极生物相容性好、背景电流低、电势窗口宽、抗吸附性 强、化学稳定性高,相较于易团聚、易脱落而失效的金属纳米颗粒 或电阻较大的高分子材料, BDD 电极更具潜力解决上述多巴胺检测 的难点问题。然而, BDD 电极虽能有效抵御蛋白吸附,但在多巴胺 的选择性检测方面存在不足: BDD 电极表面缺乏能够高灵敏度、高 选择性检测多巴胺分子的官能团。因此,在保持 BDD 本征特性的基 础上,系统研究 BDD 电极表面改性与功能化修饰对电化学检测多巴 胺的选择性、灵敏度和稳定性的影响机理,是 BDD 电极实现临床应 用的关键。基于此,本论文从 BDD 膜电极的功能性改性与修饰到 BDD 微电极体内检测,系统研究了 BDD 膜电极在多巴胺电化学检测 中的作用机理,揭示了 BDD 电极界面性质对多巴胺分子氧化过程的 影响规律,所得具体结论如下: (1) 针对 BDD 电化学活性较低的问题,采用高温溶碳刻蚀和滴 涂修饰方法,在 BDD 电极表面刻蚀纳米孔洞并修饰 Nafion 选择性透 过膜( NAF ),制备了 Nafion 修饰的多孔 BDD 复合电极 NAF/pBDD ; 研究了该复合电极对多巴胺的电化学检测机理,揭示了 NAF/pBDD 复合电极比 BDD 电极具有更多活性位点的原因,同时探究了 Nafion 膜对多巴胺和抗坏血酸的作用机制;该电极针对多巴胺的检测限 (42 nM) 和检测线性范围 (0.1 ~ 110 μM) 相较于 BDD 均得到了有效改善。 (2) 针对 BDD 电极对多巴胺选择性较弱的问题,在 pBDD 表面 修饰活性更高的纳米炭黑颗粒 (CB) ,制备了 NAF-CB/pBDD 复合电 极,研究了炭黑颗粒的加入对主要干扰物抗坏血酸 (AA) 电化学响应 的影响机理,揭示了该电极在高浓度、多干扰物并存环境下对多巴 胺的选择性检测机制。结果表明,该电极可有效将干扰物抗坏血酸 的氧化电位提前以减少对多巴胺信号的干扰,检测限 (54 nM) 和检测
追求高水平的掺杂而不会恶化结晶度是非常困难的,但对于释放材料的隐藏力至关重要。这项研究证明了通过激光至关重要的自由基,硼龙二氢化合物(BH 2)的激光振动激发(BH 2)在燃烧化学蒸气期间保持晶格完整性的有效途径。改进的钻石结晶度归因于硼氢化硼(BH)的相对丰度的激光,热抑制的热抑制,其过度存在会诱导硼隔离并扰乱结晶。BDD的硼浓度为4.3×10 21 cm -3,膜电阻率为28.1毫米·CM,孔迁移率为55.6 cm 2 v -1 s -1,超过了商业BDD。高导电和结晶的BDD在传感葡萄糖方面具有提高的效率,证实了激光激发在产生高性能BDD传感器方面的优势。在掺杂过程中重新获得激光激发的结晶度可以消除半导体行业的长期瓶颈。
追求高水平的掺杂而不会恶化结晶度是非常困难的,但对于释放材料的隐藏力至关重要。这项研究证明了通过激光至关重要的自由基,硼龙二氢化合物(BH 2)的激光振动激发(BH 2)在燃烧化学蒸气期间保持晶格完整性的有效途径。改进的钻石结晶度归因于硼氢化硼(BH)的相对丰度的激光,热抑制的热抑制,其过度存在会诱导硼隔离并扰乱结晶。BDD的硼浓度为4.3×10 21 cm -3,膜电阻率为28.1毫米·CM,孔迁移率为55.6 cm 2 v -1 s -1,超过了商业BDD。高导电和结晶的BDD在传感葡萄糖方面具有提高的效率,证实了激光激发在产生高性能BDD传感器方面的优势。在掺杂过程中重新获得激光激发的结晶度可以消除半导体行业的长期瓶颈。
对于使用模型检查技术进行的系统验证,基于二元决策图 (BDD) 的符号表示通常有助于解决众所周知的状态空间爆炸问题。基于符号 BDD 的表示也被证明可以成功分析出现的系统族,例如,通过可配置参数或遵循面向特征的建模方法。此类系统族的状态空间面临参数或特征数量的额外指数爆炸。众所周知,有序 BDD 中变量的顺序对于模型表示的大小至关重要。特别是对于从现实世界系统自动生成的模型,由于变量顺序错误,族模型甚至可能无法构建。在本文中,我们描述了一种称为迭代变量重新排序的技术,它可以构建大规模的族模型。我们通过一个具有冗余机制的飞机速度控制系统来证明我们的方法的可行性,该系统以概率模型检查器 P RISM 的输入语言建模。我们表明,标准重新排序和动态重新排序技术分别由于内存和时间限制而无法构建系列模型,而新的迭代方法则成功生成了符号系列模型。
作为一种新的编程范式,基于神经网络的机器学习已将其应用扩展到许多现实世界中的问题。由于神经网络的黑盒性质,验证和解释其行为变得越来越重要,尤其是当它们部署在安全至关重要的应用中时。现有的验证工作主要集中于定性验证,该验证询问是否存在针对神经网络的输入(指定区域),以便违反财产(例如,局部鲁棒性)。但是,在许多实际应用中,几乎可以肯定存在这样的(对抗性)输入,这使得定性答案降低了有意义。在这项工作中,我们研究了一个更有趣,更具挑战性的问题,即对神经网络的定量验证,该验证询问财产经常得到满足或侵犯财产的频率。我们针对二进制神经网络(BNNS),一般神经网络的1位量化。BNN最近在深度学习中引起了越来越多的关注,因为它们可以大幅度地减少记忆存储和执行时间,而智力操作在求助方案中至关重要,例如,嵌入式设备用于物联网的嵌入式设备。朝着对BNNS的定量验证,我们提出了一种新型算法方法,用于将BNN作为二进制决策图(BDDS),这是一种在形式验证和知识表示中广泛研究的模型。通过利用BNN的内部结构,我们的编码将BNN中块的输入输出关系转化为基数约束,然后由BDD编码。基于新的BDD编码,我们为BNN开发了一个定量验证框架,可以在其中对BNN进行精确和全面的分析。为了提高BDD编码的可扩展性,我们还研究了各个级别的并行化策略。我们通过为BNN提供定量鲁棒性验证和解释性来证明我们的框架的应用。广泛的实验评估证实了我们方法的有效性和效率。