... 确定机会或当前计划,为 FESAC LRP FM&T 和聚变等离子体科学差距做出贡献,从而在 BDV 背景下建立 FPP 的基础,同时考虑到里程碑计划获奖者所代表的 FPP 概念的多样性。特别是,确定一个范围,以解决近期科学和技术差距,影响在 BDV 时间范围内实现商业化的 FPP 的设计和建造。对于未被确定为对支持 LRP 科学驱动因素或 BDV 至关重要的计划要素范围内,确定可以推迟且对 FES 计划的影响最小或适度的特定要素,以便重新定向以支持 LRP FM&T 差距和 BDV。确定需要增加的计划要素,以满足 LRP FM&T 差距的目标,从而在 BDV 背景下建立 FPP 的基础,以及可以减少的计划要素。”
摘要本研究报告了奶牛场的流产,腹泻和牛奶生产急剧下降。该农场通常用进口疫苗接种了针对BVDV的疫苗,其中含有典型的Pestiviruses菌株(BVDV-1和BVDV-2)。从流产的母牛和显示持续性腹泻的奶牛中收集了总共13个血清样品,5个阴道排放样品和5个粪便样品。使用PCR筛选所有样品的潜在微生物原因(病毒或细菌)。在测试的23个样品中,只有一个阴道放电样品在预期的288 bp下产生了阳性的PCR结果。设计的引物是对基于5'-UTR的RTPCR测定法的高灵敏度,用于检测Pestiviruses。将PCR产品发送进行序列分析,并将结果提交给GenBank登录号#OR425033,并设计为GERD/VSVRI/PESTI-GIRAFFE/2022。然后通过三个连续的盲传中成功地在MDBK细胞中成功分离并传播该病毒。在病毒后接种后2-3天观察到了一种明显的细胞质效应(CPE),其特征是感染后72小时,其特征是液泡,细胞舍入和簇形成。pcr均在每个段落上进行,并以预期的大小给出了一个特定的频带。通过序列比对和系统发育分析的进一步分析表明,分离株与Pestivirus长颈鹿密切相关,尤其是Pestivirus PG-2。这标志着该菌株在埃及的检测,隔离和表征的第一个记录。因此,这种流行是由埃及记录的新引入的菌株引起的。因此,进口的疫苗无法提供保护,需要更新当地的疫苗以包括此Pestivirus菌株。关键字:Pestivirus PG-2,PNS,MDBK,5`UTR,CPE,系统发育分析,PCR,BDV,
聚变能科学概述聚变能科学 (FES) 计划的使命是扩展对极高温度和密度物质的根本理解,并构建开发聚变能源所需的科学基础。此外,FES 的使命还包括推进所需的基础研究,以解决发展聚变能作为美国清洁能源所需的基础科学和技术差距。这一方法包括通过将研究平衡转向长期计划 (LRP) 聚变材料和技术 (FM&T) 差距来实现聚变能使命,这将三大科学驱动因素联系起来:维持燃烧等离子体、为极端条件设计和利用聚变能。SC 支持美国参与 ITER,以便美国科学家能够使用符合 LRP 目标的燃烧等离子体实验设施。 DIII-D 国家聚变设施和国家球形环实验升级 (NSTX-U) 设施是世界领先的科学办公室 (SC) 用户设施,用于实验研究,供国家实验室、大学和行业研究团体的科学家使用,以优化磁约束机制。惯性聚变能 (IFE) 合作中心为这项工作提供了补充,以支持惯性约束方法的战略发展。聚变创新研究引擎 (FIRE) 中心通过与多个公共和私人合作伙伴的小组研究合作,解决关键的科学和技术差距,并将发现科学、创新和转化研究结合在一起。与聚变私营部门的合作可以通过聚变能源创新网络 (INFUSE) 代金券计划和 FES 建立的聚变发展里程碑计划共同努力解决常见的科学和技术挑战,从而加速聚变能源的可行性,以支持政府的大胆十年愿景 (BDV),为商业化聚变能源奠定基础。 FES 支持聚变理论和模拟方面的重大努力,以预测和解释等离子体作为自组织系统的复杂行为,从而补充这些实验活动。FES 还与高级科学计算研究 (ASCR) 计划合作,支持通过高级计算进行科学发现 (SciDAC) 组合。美国科学家利用国际合作伙伴关系对具有独特能力的海外托卡马克和仿星器进行研究。开发能够承受巨大热量和中子暴露并培育使聚变成为自给自足能源的燃料的新型材料和技术对于聚变试验工厂 (FPP) 的设计基础非常重要。材料等离子体暴露实验 (MPEX) 设施将解决等离子体-材料相互作用方面的知识空白。