关于孔掺杂高t c酸奶的少数无可争议的事实之一是它们的超导间隙δ具有D波对称性。根据“肮脏” D -Wave BCS理论,即使是结构性(非磁性)疾病也可以抑制δ,过渡温度t c和超级流体密度ρs。后者受障碍影响的程度取决于散射的性质。相比之下,T C仅对总弹性散射速率(根据剩余电阻率ρ0估计)敏感,应遵循Abrikosov-Gor的KOV搭配配对配方。在这里,我们报告了一组BI2201单晶在ρ0中的较大变化的T C的显着鲁棒性。我们还对LSCO家族进行了近期和历史数据的扩展数据,这些数据挑战了Dirty D波理论的关键预测。我们讨论了这些差异的可能原因,并认为我们不了解丘比特的疾病的本质,或者肮脏的D-波浪场景不是一个合适的框架。最后,我们提出了一种替代性(非BC)场景,该场景可能解释了以下事实:TL2201中的超导圆顶延伸到BI2201和LSCO中的范围,并提出了测试这种情况有效性的方法。
角度分辨光发射光谱或ARPES是本论文中用于研究BI2201的电子结构的主要实验技术。在本章中,将详细介绍该技术,从光学过程开始到使用高分辨率ARPES在动量和能量中的电子结构的表征。该项目的一部分涉及在Amsterdam大学的基于实验室的ARPES系统的大规模升级,称为阿姆斯特丹动量太空望远镜或Amstel。由于本文的许多测量都使用了,因此此升级的主要部分将在此处介绍。在本文中包含的其他实验是在世界各地的同步子光源的多个光束线/端部进行的,其中一个将被引入,以作为这些ARPES实验的例证。在本章末尾还讨论了其他一些成功测量的关键组成部分,包括对高质量样本的增长,表征和操纵。
