随着世界各地的第五代(5G)网络的引入,已经发布了几个MM波频段供商业用途。与第四代(4G)中使用的相比,这些频段提供更宽的带宽并增加空间重复使用。 此外,改进的孔径与波长比允许在降低的外形尺寸中实现相位的阵列天线系统(PHAA)[1]。 所有这些方面都将有助于满足不断增加的数据吞吐量所设想的需求。 特别是,分阶段阵列允许将波聚焦在非常狭窄的光束中。 光束可以通过控制单相移位来以电子方式进行电导。 这些系统的瓶颈是提供精确相移的困难。 因此,目前非常感兴趣的精确相位变速器,具有低消耗,足够的面积职业和相关收益的设计。 文献中已经提出了几种设计,并且它们以不同的方式实施。但是,主要区别在于被动和主动的区别。 被动相位变速器[2] - [4]在高插入损失和开销面积的费用下实现高线性。 相反,活跃的线性具有较低的线性[5] - [9],但是,紧凑型解决方案,低损耗(或增益)的可能性以及可以用于振幅锥度[10]的增益调整,使后者最喜欢的候选者用于MM-Wave Phaas。 在本文中,介绍了IHP BICMOS技术制造的两个主动相位变速器的设计,一种旨在高增益,另一种用于低区域职业。相比,这些频段提供更宽的带宽并增加空间重复使用。此外,改进的孔径与波长比允许在降低的外形尺寸中实现相位的阵列天线系统(PHAA)[1]。所有这些方面都将有助于满足不断增加的数据吞吐量所设想的需求。特别是,分阶段阵列允许将波聚焦在非常狭窄的光束中。光束可以通过控制单相移位来以电子方式进行电导。这些系统的瓶颈是提供精确相移的困难。因此,目前非常感兴趣的精确相位变速器,具有低消耗,足够的面积职业和相关收益的设计。文献中已经提出了几种设计,并且它们以不同的方式实施。但是,主要区别在于被动和主动的区别。被动相位变速器[2] - [4]在高插入损失和开销面积的费用下实现高线性。相反,活跃的线性具有较低的线性[5] - [9],但是,紧凑型解决方案,低损耗(或增益)的可能性以及可以用于振幅锥度[10]的增益调整,使后者最喜欢的候选者用于MM-Wave Phaas。在本文中,介绍了IHP BICMOS技术制造的两个主动相位变速器的设计,一种旨在高增益,另一种用于低区域职业。本文的其余部分如下组织。第二节描述了两个VM的架构。第三节分析了这两种设计。第四节对测量结果的评论,第五节总结了本文。
摘要:SIGE BICMOS技术可用于生产超快速的低功率硅像素传感器,即使没有内部增益也可以提供最新的时间分辨率。此类传感器的开发需要识别和控制主要因素,这些因素可能会降低正时性能以及传感器时间分辨率对放大功率消耗的依赖性的表征。IHP微电子学中SG13G2技术在SG13G2技术中产生的原型传感器的90 SR源的测量表明,在7μA的放大电流下,在150μpS的放大电流下的时间分辨率为145 ps,功率为150μA。用于校正时间步行的信号时阈值测量的分辨率是影响该原型的时机性能的主要因素。
摘要 - 高速和功率电路的设计复杂性增加到更高的操作频率。因此,此手稿概述了如何使用两个可切换除法比率为4和5的双重模数预分量器设计和优化完全差异的发射极耦合逻辑(ECL)门。第一个预拉剂被优化为最高的运行频率,分别为5和4的分别为142 GHz,甚至166 GHz。此外,另一位预拉剂已针对广泛使用的80 GHz频段进行了优化,该频段已由汽车行业大量促进,并且该域中有大量组件。可以在具有较宽的除法比率范围的完全可编程频率分隔线中使用两个预分量员。作为对具有出色噪声性能的频率转换设备的添加期噪声的测量非常具有挑战性,因此在理论上进行了讨论,并实际上进行了。在100 Hz的集成极限内,测得的抖动在500 AS和1.9 FS之间,最高为1 MHz偏移频率。
摘要 — 介绍了一种用于 300 GHz 左右高速通信的宽带三级伪差分 SiGe 互连双极晶体管 (HBT) 功率放大器 (PA)。该放大器采用实验性的 130 nm SiGe BiCMOS 技术制造,ft / f max 为 470/650 GHz。建议使用非对称耦合线变压器在所有放大器接口处进行器件电抗补偿,以促进宽带阻抗变换。该放大器的最大小信号功率增益为 23.0 dB,P sat /OP 1 dB 分别高达 9.7/6.7 dBm。它在小信号操作中显示 63 GHz(239-302 GHz)的 3-dB 带宽,在饱和时显示 94 GHz(223-317 GHz)的 3-dB 带宽。该放大器在 3 V 电源电压下消耗大约 360 mW,在 260 GHz 时产生 1.95% 的峰值功率附加效率 (PAE)。
摘要 - 对于任何微电动机械系统(MEMS)设备的工厂最为明显的挑战之一,是该设备的低成本和高吞吐包装,以保护其免受环境颗粒,水分和配置的影响。在这项工作中,通过晶状级别CMOS(BICMOS)技术的130 nm双极CMOS(BICMOS)技术的RF-MEMS开关单一地整合到基于铝的后端线(BEOL)中,这是通过晶状级级别的薄级薄薄薄层薄层包装(WLE)。在晶片级封装包装之前,开发并证明了用于释放MEMS设备的湿式和蒸气释放技术。最终装置的封装是用Ti/Tin/Tin/Alcu/Ti/Tin层的堆栈实现为3- µm金属网格的晶圆级包装的。最后,将具有高沉积速率(HDR)的二氧化硅沉积过程用于释放孔的完整封装。通过低频C - V和D-Band时高频S-参数测量值评估了封装对RF-MEMS开关性能的影响。结果指示设备的完整功能,没有明显的性能下降。封装不需要额外的掩码,并且将其开发为8英寸晶圆级工艺,因此为RF-MEMS设备封装和包装提供了低成本和高吞吐量解决方案。
摘要 - 本文的上下文是低功率应用:RF能量收集。在本文中,我们比较了用两种不同的技术实现的两个迪克森电压直流的性能:FDSOI 28 nm和BICMOS 55 nm。两种技术中二极管的I-V特性的测量表明,与BICMOS相比,FDSOI显示出较小的阈值电压和泄漏电流较小。也通过测量结果确定,用FDSOI实现的直接效力的效率优于使用BICMOS获得的直径的效率。此外,研究了后门极化(BGP)在FDSOI中的影响,并提出了新型的动态BGP。在FDSOI中实现了44%的功率转化效率(PCE),而BICMO中观察到37%的PCE。
摘要:使用飞秒激光研究了为 MONOLITH H2020 ERC Advanced 项目生产的第二个单片硅像素原型的时间分辨率。ASIC 包含一个间距为 100 μ m 的六边形像素矩阵,由低噪声和非常快速的 SiGe HBT 前端电子设备读出。使用厚度为 50 μ m 的外延层、电阻率为 350 Ω cm 的硅晶片来生产完全耗尽的传感器。在测试的最高前端功率密度 2.7 W/cm 2 下,发现飞秒激光脉冲的时间分辨率对于由 1200 个电子产生的信号为 45 ps,对于 11k 个电子则为 3 ps,这大约相当于最小电离粒子产生的电荷最可能值的 0.4 倍和 3.5 倍。将结果与使用同一原型获取的测试光束数据进行比较,以评估电荷收集波动产生的时间抖动。
摘要本文在222-270 GHz的气体光谱中介绍了带有Bowtie-Antenna和硅透镜的发射器(TX)和一个接收器(RX),它们是在IHP的0.13 µM SIGE BICMOS技术中制造的。TX和RX使用两个集成的本地振荡器,用于222 - 256 GHz和250 - 270 GHz,可用于双波段操作。由于其大约27 dbi的定向性,带有硅透镜的单个集成的Bowtie-Antenna可以使TX的EIRP约为25 dbm,因此与先前报道的系统相比,2频段TX的EIRP更高。通过Y因子方法测量的Rx的双边噪声温度为20,000 K(18.5 dB噪声图)。气态甲醇的吸收光谱被用作用TX-和RX模块的气体光谱系统性能的量度。
摘要:目前,确保电网的正确功能在维持规范电压参数和本地线重载方面是一个重要问题。可再生能源(RES)的不可预测性,峰需求现象的发生以及超过智能网格中名义值高于名义值的电压水平,这使得在该最局面中进行进一步的研究。本文介绍了电力管理系统的仿真测试和实验室测试的结果,以减少网格负载过高或降低由于增加的造成物质的产生而导致的过高的网格电压值。该研究基于使用物联网(物联网)技术的智能设备(SA)的弹性能源管理(EEM)算法。算法的数据是从实现消息队列遥测传输(MQTT)协议的消息代理中获得的。在EEM算法中选择SA的功率设置的复杂性需要使用应用于NP难题类别的解决方案。为此,在EEM算法中使用了贪婪的随机自适应搜索程序(GRASP)。在弹性能量管理算法中,在电压爆发时,模拟和实验的提出的结果证实了通过弹性能量管理算法调节网络电压的可能性。