Blaise Ravelo 1,IEEE 会员,Mathieu Guerin 2,IEEE 会员,Jaroslav Frnda 3,4,IEEE 高级会员,Frank Elliot Sahoa 5,Glauco Fontgalland 6,IEEE 高级会员,Hugerles S. Silva 7,8,IEEE 会员,Samuel Ngoho 9,Fayrouz Haddad 2,IEEE 会员,以及 Wenceslas Rahajandraibe 2,IEEE 会员 1 南京信息工程大学(NUIST),电子信息工程学院,江苏南京 210044 2 艾克斯-马赛大学,CNRS,土伦大学,IM2NP UMR7334,13007 马赛,法国 3 日利纳大学交通运输与通信运营与经济学院定量方法与经济信息学系, 01026 Zilina, 斯洛伐克 4 电信系,电气工程和计算机科学学院,VSB 俄斯特拉发技术大学,70800 俄斯特拉发,捷克共和国 5 Laboratoire de Physique Nucléaire et Physique de l'Environnement (LPNPE), Université d'Antananarivo, Antananarivo 101, Madagascar 6 联邦大学Campina Grande,应用电磁和微波实验室,Campina Grande/PB,58429,巴西 7 Instituto de Telecomunicações and Departamento de Eletrónica,Telecomunicações e Informática,Universidade de Aveiro,Campus Universitário de Santiago,3810-193 Aveiro,葡萄牙 8 巴西利亚大学电气工程系(UnB),联邦区70910-900,巴西 9 法国系统科学协会 (AFSCET),巴黎 75013,法国
其独特卖点是采用最先进 BiCMOS 技术的 200 毫米试验线,该线在类似工业的条件下全天候运行,用于提供原型和小批量生产。
Alyosha C. Molnar 康奈尔大学 超越 CMOS 的 N 路径混频器 Pascal Chevalier ST Microelectronics 用于有线、无线和卫星通信应用的 55 纳米灵活 SiGe BiCMOS 技术
对高速数据传输的迫切需求加上纳米技术节点的发展,正推动通信标准(如 5G)向毫米波频段发展。毫米波频段的使用还涉及汽车雷达、成像或医疗应用。在更高的频段,用户可以受益于更宽的带宽,从而可以获得所需的数据速率或雷达分辨率的提升。另一方面,消费类应用需要低成本的解决方案,例如 CMOS 或 BiCMOS 技术提供的解决方案。然而,虽然 BiCMOS 技术中晶体管的工作频率 (𝑓)/𝑓 *+,) 高于 400 GHz 以满足毫米波应用 [1],但这些技术中无源可调元件的种类仅限于少数几种变容二极管或开关电感器。可调元件可用于执行必要的射频功能,例如 VCO 调谐 [2]、相移控制,尤其是构建波束控制系统以补偿自由空间中路径损耗的增加 [3],或用于校准目的 [4] 等。可调设备的性能可通过调谐范围和品质因数来量化
(850/900/1800/1900MHz)直接转换GSM/GPRS RF收发器,带有积分VCO和分数-N合成器”,载于IEEE固态电路杂志,第1卷。37,pp。1710-1720,2002年12月。<由266 – Scholar.google.com> 67。W. Rhee,B。Bisanti和A. Ali,“ 18毫米2.5-GHz/900-mHz BICMOS双重频率
IHP 是欧洲硅基系统、超高频电路和技术研究和创新中心 研究重点是社会相关主题,如通信、移动性、健康与环境、工业与农业、可持续性和安全。 独特的卖点是一条 200 毫米试验线,用于最先进的 BiCMOS 技术,在类似工业的条件下全天候运行,用于提供原型和小批量生产。 合格的技术平台,可直接用于科学和工业
B55X 技术取代了 B55 技术,同时大幅提高了其性能。这项新技术成功结合了双极晶体管的更高增益和速度(例如截止频率从 320 GHz 提高到 400 GHz),以及更低的 MOS 晶体管功耗,与同等 CMOS 平台保持一致。它进一步促进了 RF、模拟和数字部件在单个芯片上的集成,并且绝对仍然是欧洲 RF 应用的旗舰工业 BiCMOS 技术。