高次谐波桨距长期以来一直是一种有吸引力但尚未开发的方法,用于减少振动转子载荷和由此产生的机身振动。这个概念很简单。大多数直升机振动源于转子叶片在方位角周围旋转时遇到的不均匀速度分布。这种不均匀分布是由于叶片相对于飞行方向不断变化和转子下方不规则的涡流尾流造成的。由此产生的叶片攻角随方位角的变化包含转子轴速度的每个谐波。然而,只有某些谐波会引起振动载荷并传递到机身。许多谐波会在各个叶片上产生载荷,这些载荷在轮毂处完全相互抵消。高次谐波叶片螺距叠加在传统的零和每转一的叶片螺距控制上,是一种选择性控制攻角谐波的方法。•会产生振动,
高次谐波桨距长期以来一直是一种有吸引力但尚未开发的方法,用于减少振动转子载荷和由此产生的机身振动。这个概念很简单。大多数直升机振动源于转子叶片在方位角周围旋转时遇到的不均匀速度分布。这种不均匀分布是由于叶片相对于飞行方向不断变化和转子下方不规则的涡流尾流造成的。由此产生的叶片攻角随方位角的变化包含转子轴速度的每个谐波。然而,只有某些谐波会引起振动载荷并传递到机身。许多谐波会在各个叶片上产生载荷,这些载荷在轮毂处完全相互抵消。高次谐波叶片螺距叠加在传统的零和每转一的叶片螺距控制上,是一种选择性控制攻角谐波的方法。•会产生振动,
概述.................... ... . 5 配置服务器 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ... 30 步骤 9 选择可选的安全数字卡或 M.2 驱动器 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ... . . 51 备件. . . . . . . . . . . . . . . . . . . 53 升级或更换 CPU . . . . . . . . . . . . . . . . . . . 61 升级或更换内存 . . . . . . . . . . . . . . . . . ...
本报告是作为美国政府机构赞助的工作的说明而编写的。美国政府及其任何机构或其任何雇员均不对所披露的任何信息、设备、产品或流程的准确性、完整性或实用性做任何明示或暗示的保证,也不承担任何法律责任或义务,也不表示其使用不会侵犯私有权利。本文以商品名、商标、制造商或其他方式提及任何特定商业产品、流程或服务并不一定构成或暗示美国政府或其任何机构对其的认可、推荐或支持。本文表达的作者的观点和意见不一定代表或反映美国政府或其任何机构的观点和意见。
摘要 能够精确测量旋翼叶片动力学的技术几乎可以影响旋翼机领域的所有领域;从维护一直到叶片设计。BladeSense 项目于 2016 年启动,旨在使用能够直接测量形状的新型光纤传感器,在开发和展示这种能力方面迈出一步。在本文中,作者总结了建模和仿真、仪器开发和地面测试方面的关键项目活动。虽然很简短,但还是讨论了这些学科中的工程方法以及相关的挑战和成就。这包括使用计算空气动力学和结构建模来预测叶片动力学,以及开发直接光纤形状传感,允许在叶片上的多个位置上进行 1kHz 以上的测量。此外,还讨论了原型机载系统的开发,该系统克服了在旋转主旋翼和固定机身框架之间传输数据的挑战。 1. 简介
概述.................... ... . . . . . . . . . . . . . 4 基本服务器标准功能和特性 . . . . . . . . . . . . . . 5 配置服务器 . . . . . . . . . . . . . . . . . . . 7 步骤 1 选择基本服务器 SKU . . . . . . . . . . . . . . . . ... . ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ... . ... ... . . . 44 UCS 本地语言技术支持 . . . . . . . . . . . . . . . 44 补充材料. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 内存镜像 . . . . . . . . . . . . . . . . . . . . . . . 48 第三代英特尔® 至强® 可扩展处理器 (Ice Lake) 的内存支持 . . . . . . . . . . . 49 PMem 支持 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 App Direct 模式 . . . . . . . . . . . . . . . . . . . . . . . . 49 记忆模式 . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 备件 . ................. ... 57 技术规格. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 59.... .... .... .... .... .... 59.... .... .... .... .... .... 59
摘要:事实证明,增材制造 (AM) 是众多行业中比传统工艺更受欢迎的工艺。这篇综述文章重点介绍了航空涡轮叶片从传统制造工艺到增材制造工艺的逐步发展。AM 是一种 3D 打印工艺,涉及快速成型和逐层构建工艺,可以开发涡轮叶片,并提供多种选项来修改涡轮叶片设计,与传统生产模式相比,可降低成本和重量。本文介绍了适用于制造高温涡轮叶片的各种 AM 技术,例如选择性激光熔化、选择性激光烧结、电子束熔化、激光工程净成型和电子束自由成型。本文讨论了 AM 的相关参数,例如粒度和形状、粉末床密度、残余应力、孔隙率和粗糙度。
实验程序和注意事项 ........................17 空速测量 ................................18 推力测量 .................................19 功率测量 ..。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。20 数据采集。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。20 测试程序。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。20 数据缩减。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。21 不确定性。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。22
摘要可再生能源的概念已在世界上深深地根深蒂固,吸引了越来越多的研究人员和行业专业人员投入大量资源来推动更有效的系统的开发。虽然当前的大型风力涡轮机叶片达到50 m的长度,并且通常作为单个实体制造,但本研究的重点是专门针对小型涡轮机量身定制的刀片剖面的设计和评估。使用旋转成型制造刀片,采用各种聚合物(包括热塞和热塑性)的聚合物。为增强其机械性能,将泡沫掺入聚氨酯和聚乙烯叶片中。通过机械分析来评估各种配方和泡沫来评估合适的刀片。空气动力学分析是在不同的风速和俯仰角范围内进行的。结果表明功率系数(CP)接近0.5。
摘要:本文介绍了叶片上传感器系统的设计,实现和验证,用于用于低容量风力涡轮机的远程振动测量。自主传感器系统被部署在三个风力涡轮机上,其中一个是在智利南部较远的天气条件下运行的。系统记录了叶片在自由式和边缘方向上的加速度响应,可用于提取叶片动态特征的数据,可用于损伤诊断和预后。所提出的传感器系统显示出可靠的数据采集和从远程位置的风力涡轮机的传输,证明了创建一个完全自主的系统的能力,该系统能够记录数据,以监视和评估无人干预的长时间的风力涡轮机叶片的健康状况。本研究中介绍的传感器系统收集的数据可以作为开发基于振动的实时结构健康监测策略的基础。