平民MTBI的最常见原因因年龄而有所不同,包括无意的瀑布,被物体撞到或反对物体,汽车事故和接触运动。5,6虽然服务人员也暴露于这些有害的情况,但在过去的二十年中,最常见的军事MTBI来源是爆炸。3爆炸中的过压波会导致与爆炸有关的MTBI,占服务成员中MTBI的33%。7其他原因包括爆炸产生的弹丸的影响,在爆炸之后将个体推进到对象,由爆炸效应而不是爆炸本身产生的过程。8不论其起源如何,经历一个mtbi几乎使维持随后的mtbis的风险增加了一倍。9这对于恢复很重要,因为恢复持续时间和缺陷的严重程度与持续的mTBI数量成比例地增加。10
2020 年 2 月 21 日,黎巴嫩报告了首例 COVID-19 病例。三周后,政府宣布全面动员,全国进入全面封锁状态 [1]。从 2020 年 5 月开始,政府开始放松限制,并于 7 月 1 日全面重新开放机场 [2]。病例数逐渐增加,导致 7 月病例激增,8 月随后实施封锁 [3]。在封锁期间,首都贝鲁特发生大规模爆炸,伤亡人数涌入医院,人们急忙救助伤者,在非常困难的人道主义局势下忽视了保持社交距离的措施,使情况进一步恶化。爆炸后病例数激增,导致该国于 8 月 21 日进入第三次为期两周的封锁 [4]。与此同时,秋季每日病例数持续增长,导致 2020 年 11 月再次封锁 [5]。
靶标 引物/探针 序列 5′ → 3′ 参考 18S rDNA SSUF1 AACCTGGTTGATCCTGCCAGTAGTC ( 1 ) SSUR1 TGATCCTTCTGCAGGTTCACCTACG 28S rDNA 28SF1 AAGCATATCAATAAGCGGAGG ( 2 ) 635 GGTCCGTGTTTCAAGACGG 细胞色素 B cytB_F1 GYGTWGAACAYATTATGAGAG ( 3 ) cytB_R2 WACCCATAARAARTACCATTCWGG 附表 2. 18S rDNA 核糖体亚基、28S rDNA 核糖体亚基 D1/D2 区和部分细胞色素 B 基因的序列分析。使用基本局部比对搜索工具 (BLAST) 查询 NCBI 数据库(访问于 2024 年 7 月)
• 在制定明确的策略之前,建议消防人员定义一个保守的爆炸半径,并将其保持在爆炸半径之外,同时将 ESS 中的气体/蒸汽混合物视为高于 LEL,除非证明并非如此。
摘要:地面振动是爆破活动最不利的环境影响之一,会对邻近的房屋和建筑物造成严重损坏。因此,有效预测其严重程度对于控制和减少其复发至关重要。不同的研究人员提出了几种常规振动预测方程,但大多数仅基于两个参数,即单位延迟使用的炸药量和爆炸面与监测点之间的距离。众所周知,爆破结果受许多爆破设计参数的影响,例如负担、间距、火药系数等。但这些都没有被考虑在任何可用的常规预测器中,因此它们在预测爆炸振动时显示出很高的误差。如今,人工智能已广泛应用于爆破工程。因此,本研究采用了三种人工智能方法,即高斯过程回归 (GPR)、极限学习机 (ELM) 和反向传播神经网络 (BPNN),来估计印度 Shree Cement Ras 石灰石矿爆破引起的地面振动。为了实现该目标,从矿场收集了 101 个爆破数据集,其中粉末系数、平均深度、距离、间距、负担、装药重量和炮泥长度作为输入参数。为了进行比较,还使用相同的数据集构建了一个简单的多元回归分析 (MVRA) 模型以及一种称为多元自适应回归样条 (MARS) 的非参数回归技术。本研究是比较 GPR、BPNN、ELM、MARS 和 MVRA 以确定其各自预测性能的基础研究。八十一 (81) 个数据集(占总爆破数据集的 80%)用于构建和训练各种预测模型,而 20 个数据样本(20%)用于评估所开发的预测模型的预测能力。使用测试数据集,将主要性能指标,即均方误差 (MSE)、方差解释 (VAF)、相关系数 (R) 和判定系数 (R2) 进行比较,作为模型性能的统计评估指标。本研究表明,与 MARS、BPNN、ELM 和 MVRA 相比,GPR 模型表现出更出色的预测能力。GPR 模型显示最高的 VAF、R 和 R 2 值分别为 99.1728%、0.9985 和 0.9971,最低的 MSE 为 0.0903。因此,爆破工程师可以采用 GPR 作为预测爆破引起的地面振动的有效且合适的方法。
煤炭钢生产是气候变化的主要但不足的驱动因素。钢产量至少贡献了每年的全球温室气体(GHG)排放量至少贡献了7%,这无需考虑煤矿开采的重大气候影响。作为SteelWatch的报告,钢生产中的日落煤,在钢生产的五个核心阶段中布置的6个,大多数排放来自二氧化碳(CO2),这些排放是在使用金属燃料(Metallergical Coal(Met coal)中“减少”铁矿石“减少”(氧气)在爆炸炉中“减少”(氧气)时释放的。此外,MET煤矿开采产生了大量的甲烷排放,具有严重的变暖。煤炭的使用是钢铁气候问题的核心,解决煤炭的唯一方法是立即停止在爆炸炉中的所有投资。这包括不延长其寿命,通过“固定”炉子,使用排放技术进行翻新或构建任何新的炉子。
月球表面上最大的移动性需求驱动因素之一是将货物从其降落地点转移到其使用点。许多因素推动了货物点的使用点,其中许多因素需要与着陆点分离(例如,由着陆器的阴影,兰德斯污染造成的黑暗或从着陆器羽状表面相互作用中弹出弹出)。这些搬迁距离可能包括以下因素:•与着陆器遮蔽(数十米)•由于着陆器与现有基础设施和登陆器的划分之间的分离,降落器爆炸弹性射出限制(> 1,000 m),或者是在可用的区域陆地上(以5,000 m的可用区域范围)(以5,000 m)的形式汇总的元素汇总(以便5,000 m),以供元素汇总到5,000 m的lun intim intim intim insive tos toe lugn of 5,000 m)。建筑“月球遗址选择”白皮书。[4]
多种有限元 (FE) 模型可用于预测人脑与爆炸波相互作用后产生的生物力学反应,这些模型已证实纳入脑表面回旋、主要脑静脉以及使用非线性脑组织特性来提高模型准确性的重要性。我们假设,纳入更详细的脑静脉和动脉网络可进一步增强模型预测的生物力学反应,并有助于识别爆炸引起的脑损伤的相关因素。为了更全面地捕捉人脑组织对爆炸波暴露的生物力学反应,我们将之前已验证可承受钝性撞击的三维 (3-D) 详细脉管人头 FE 模型与 3-D 冲击波管 FE 模型耦合在一起。利用耦合模型,我们计算了人头面对来袭爆炸波时,爆炸过压 (BOP) 相当于 68、83 和 104 kPa 的生物力学反应。我们通过将模型预测的颅内压 (ICP) 值与之前在尸体头部进行的冲击波管实验收集的数据进行比较,验证了我们的 FE 模型,该模型包括详细的脑静脉和动脉网络、脑回和脑沟以及高粘弹性脑组织特性。此外,为了量化包含更全面的脑血管网络的影响,我们将详细血管模型与简化血管模型和无血管模型在相同爆炸载荷条件下的生物力学响应进行了比较。对于三个 BOP,预测的 ICP 值与额叶的实验结果非常吻合,峰值压力差异为 4 – 11%,相移差异为 9 – 13%。正如预期的那样,加入详细的脑血管系统不会影响 ICP,但是,它会使峰值脑组织应变重新分布多达 30%,并产生高达 7% 的峰值应变差异。与仅包含主要脑静脉的现有减少血管 FE 模型相比,我们的高保真模型重新分布了大部分脑组织的应变,这凸显了在人头 FE 模型中加入详细的脑血管网络的重要性,以便更全面地解释爆炸暴露引起的生物力学反应。
1引言钻孔和爆破,D&B是一种传统的地下和表面发掘中岩石发掘的方法。隧道大量用于采矿以及土木工程,例如,运输隧道,水转移隧道,地下动力行星等。伊朗的大型山脉需要许多以不同形状和尺寸的隧道建筑,用于各种应用。d&b方法更适合大多数情况,与机械化的挖掘相比,由于其明显的灵活性,低投资成本以及不需要高科技。任何爆破操作的效率都受爆炸材料与岩体之间的相互作用的影响[1-6]。因此,岩石参数的知识可以导致爆炸结果和特定电荷的优化。影响爆炸结果的参数如下[7]:•爆炸性规格•岩石质量规格•钻孔模式的几何形状